• P. Janardhan

      Articles written in Journal of Astrophysics and Astronomy

    • Enigmatic solar wind disappearance events – Do we understand them?

      P. Janardhan

      More Details Abstract Fulltext PDF

      At the Sun-Earth distance of one astronomical unit (1 AU), the solar wind is known to be strongly supersonic and super Alfvenic with Mach and Alfven numbers being on average 12 and 9 respectively. Also, solar wind densities (average ∼10cm-3) and velocities (average ∼450kms-1) at 1AU, are known to be inversely correlated with low velocities having higher than average densities andvice versa. However, on May 11 and 12 1999 the Earth was engulfed by an unusually low density (< 0.1cm-3) and low velocity (< 350km s-1) solar wind with an Alfven Mach number significantly less than 1. This was a unique low-velocity, low-density, sub-Alfvénic solar wind flow which spacecraft observations have shown lasted more than 24 hours. One consequence of this extremely tenuous solar wind was a spectacular expansion of the Earth’s magnetosphere and bow shock. The expanding bow shock was observed by several spacecraft and reached record upstream distances of nearly 60 Earth radii, the lunar orbit. The event was so dramatic that it has come to be known asthe solar wind disappearance event. Though extensive studies of this event were made by many authors in the past, it has only been recently shown that the unusual solar wind flows characterizing this event originated from a small coronal hole in the vicinity of a large active region on the Sun. These recent results have put to rest speculation that such events are associated with global phenomenon like the periodic solar polar field reversal that occurs at the maximum of each solar cycle. In this paper we revisit the 11 May 1999 event, look at other disappearance events that have ocurred in the past, examine the reasons why speculations about the association of such events with global phenomena like solar polar field reversals were made and also examine the role of transient coronal holes as a possible solar source for such events.

    • Deep GMRT 150 MHz Observations of the DEEP2 Fields: Searching for High Red-Shift Radio Galaxies Revisited

      Susanta K. Bisoi C. H. Ishwara-Chandra S. K. Sirothia P. Janardhan

      More Details Abstract Fulltext PDF

      High red-shift radio galaxies are best searched at low radio frequencies, due to its steep radio spectra. Here we present preliminary results from our programme to search for high red-shift radio galaxies to ∼ 10 to 100 times fainter than the known population till date. We have extracted ultra-steep spectrum (USS) samples from deep 150 MHz Giant Meter-wave Radio Telescope (GMRT) observations from one of the three well-studied DEEP2 fields to this effect. From correlating these radio sources with respect to the high-frequency catalogues such as VLA, FIRST and NVSS at 1.4 GHz, we find ∼ 100 steep spectrum (spectral index, 𝛼 > 1) radio sources, which are good candidates for high red-shift radio galaxies.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.