M. K. V. Bappu
Articles written in Journal of Astrophysics and Astronomy
Volume 1 Issue 1 September 1980 pp 1-1
Volume 2 Issue 3 September 1981 pp 215-244
Mass segregation in globular clusters
Photoelectric aperture-photometry of
Results of equidensitometry of the cluster 47 Tuc, obtained in the present study, are compared with the earlier results of photoelectric photometry. Here too an increase in ellipticity is associated with an increase in the blueness of the cluster. All globular clusters studied so far for ellipticity show a similarity in the dependence of the ellipticity on the distance from the centre. The ellipticity has small values near the centre and in the outer regions, with the maximum value in between. We suggest that the red stars in globular clusters have a nearly spherical distribution. The blue stars form a bulge around the core with a more elliptical distribution and a different orientation. A similarity between the ellipticity aspects of both the globular clusters and rotation in the nucleus of M 31 is pointed out; the M 31 nucleus may thus show a bluer colour and smaller UV excess around the region where the rotation curve shows a peak.
Volume 2 Issue 4 December 1981 pp 1- Erratum
Volume 3 Issue 3 September 1982 pp 249-266
Jagdev Singh M. K. V. Bappu A. K. Saxena
Coronal spectra during the total solar eclipse of 1980 February 16, were obtained in the 6374Å [Fex] line using a multislit spectrograph. These spectra have a dispersion of 2.5 Å mm-1. The observed line profiles from 1.1 to 1.7 R⊙ with a spatial resolution of 10 × 22 arcsec2, give half-widths that vary between 0.6 Å and 2.4Å. A large number of locations have half-widths around 1.3 Å corresponding to a temperature of 4.6 × 106 K. If temperature of the order of 1.3 × 106 K are typical of the regions that emit [Fex], then turbulent velocities of ~ 30 km s-1 need to be invoked for the enhanced line broadening. The line-of-sight velocities measured range between +14 km s-1 to -17 km s-1. Most of the locations have velocities less than ±5 km s-1. From these observations we conclude that corona does not show any localized differential mass motion and that it co-rotates with the photospheric layers deeper down.
Volume 3 Issue 3 September 1982 pp 277-296
The renewal of chromospheric activity in red giants and supergiants is interpreted in terms of the reappearance of dynamo activity in the interior due to the spin-up of the core caused by its contraction in the course of evolution from the main sequence to the giant stage. A region of very high rotational shear (differential rotation) develops between the core, which spins up by a large factor through the drastic contraction, and the envelope, which spins down in contrast by virtue of expansion. Mechanisms of angular momentum transfer may operate to smear this large shear, and bring the inner part of the envelope into sheared rotation. A convective layer, on the other hand, develops in the envelope from the surface inwards, when the envelope expands and the temperature is lowered. A dynamo layer, or a layer in which the sheared rotation co-exists with the convection (the presence of a remnant magnetic field being postulated), will thus reappear in the inner part of the envelope when the envelope-convection reaches down and invades the layer of sheared rotation. Surface chromospheric activity due to the magnetic field is thus renewed when the regenerated magnetic field is brought up to the surface by the envelope-convection. These phenomena occur as the star evolves into the giant stage and hence explain the observed characteristic of gradual revival of chromospheric activity from the subgiant to the giant stage.
Volume 44, 2023
All articles
Continuous Article Publishing mode
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.