• Joydeep Bagchi

      Articles written in Journal of Astrophysics and Astronomy

    • A VLA 20 and 90 centimetre radio survey of distant A-bell clusters with central cD galaxies

      Joydeep Bagchi Vijay K. Kapahi

      More Details Abstract Fulltext PDF

      A radio survey, using the Very Large Array at 20 and 90 cm λ has been carried out in the direction of 46 distant Abell clusters (0.1 ≲ z ≲ 0.3) dominated by a cD galaxy (clusters classified to be Bautz-Morgan I type). A radio source coincident with the cD galaxy was detected in 16 clusters. We find that the radio luminosity function of the cD galaxies at 20cm λ, and below the luminosityP1.4ghz ≲ 1024.5 W Hz-1, is similar to that of brightest ellipticals in less clustered environments. Above this luminosity, the cDs seem to have a higher probability of becoming radio sources. The effect of optical brightness on radio emission is shown to be the same for the two classes. No significantly large population of very-steep-spectrum sources with spectral index α >1.2 (flux density ∝ frequency) was found to be associated with cD galaxies. A significant negative correlation is found between the radio luminosity of the cD galaxy and the cooling-time of the intra cluster medium near the galaxy. We also present evidence that the probability of radio emission from first-ranked galaxies is dependent upon their location relative to the geometrical centres of clusters and thus related to the morphological class and the evolutionary state of the clusters. We argue that both these effects are primarily caused by the dynamical evolution of these distant clusters of galaxies.

    • Double Relics in the Outskirts of A3376: Accretion Flows Meet Merger Shocks?

      Ruta Kale K. S. Dwarakanath Joydeep Bagchi Surajit Paul

      More Details Abstract Fulltext PDF

      The case of spectacular ring-like double radio relics in the merging, rich galaxy cluster A3376 is of great interest to study non-thermal phenomena at cluster outskirts.We present the first low frequency (330 and 150 MHz) images of the double relics using the GMRT. With our GMRT 330 MHz map and the VLA 1400 MHz map (Bagchi et al. 2006), we have constructed and analyzed the distribution of spectral indices over the radio relics. We find flat spectral indices at the outer edges of both the relics and a gradual steepening of spectral indices toward the inner regions. This supports the model of outgoing merger shock waves. The eastern relic has a complex morphology and spectral index distribution toward the inner region. This will be discussed in the context of the effect of large-scale accretion flows on the outgoing merger shocks as reported in the recent simulations.

    • Clusters of Galaxies and the Cosmic Web with Square Kilometre Array

      Ruta Kale K. S. Dwarakanath Dharam Vir Lal Joydeep Bagchi Surajit Paul Siddharth Malu Abhirup Datta Viral Parekh Prateek Sharma Mamta Pandey-Pommier

      More Details Abstract Fulltext PDF

      The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.