J. S. Yadav
Articles written in Journal of Astrophysics and Astronomy
Volume 15 Issue 1 March 1994 pp 85-94
S. Biswas N. Durgaprasad R. K. Singh M. N. Vahia J. S. Yadav A. Dutta J. N. Goswami
The Anuradha cosmic ray experiment in Spacelab-3, flown in the orbit at 350 km with an inclination of 57° for about six days, was used to measure the low energy galactic cosmic ray (GCR) heavy ions using a specially designed CR-39 detector module incorporating the arrival time information of the particles. The abundances of sub-iron (Sc-Cr) and iron particles in the low energy interval of 30–300 MeV/N were determined from the measurements made in four different depths of the CR-39 detector module of 150 layers. From these studies we obtained sub-iron (Sc-Cr) to iron abundance ratios of 0.8 to 1.2 in 30–300 MeV/N energy range. It is found that these ratios are enhanced by a factor of two as compared to interplanetary ratios of about 0.5. It is shown that the enhancement of the ratio inside the earth’s magnetosphere is probably due to the degree of ionization of low energy Sc to Cr and Fe ions in the galactic cosmic rays and to the rigidity filtering effects of the geomagnetic field. Further studies are needed to understand fully the phenomena and their implications.
Volume 38 Issue 2 June 2017 Article ID 0030 Review Article
P. C. Agrawal J. S. Yadav H. M. Antia Dhiraj Dedhia P. Shah Jai Verdhan Chauhan R. K. Manchanda V. R. Chitnis V. M. Gujar Tilak Katoch V. N. Kurhade P. Madhwani T. K. Manojkumar V. A. Nikam A. S. Pandya J. V. Parmar D. M. Pawar Jayashree Roy B. Paul Mayukh Pahari Ranjeev Misra M. H. Ravichandran K. Anilkumar C. C. Joseph K. H. Navalgund R. Pandiyan K. S. Sarma K. Subbarao
Large area X-ray propositional counter (LAXPC) instrument on AstroSat is aimed at providing high time resolution X-ray observations in 3–80 keV energy band with moderate energy resolution. To achieve large collecting area, a cluster of three co-aligned identical LAXPC detectors, is used to realize an effective area in access of ∼6000cm2 at 15 keV. The large detection volume of the LAXPC detectors, filled with xenon gas at ∼2 atmosphere pressure, results in detection efficiency greater than 50%, above 30 keV. In this article, we present salient features of the LAXPC detectors, their testing and characterization in the laboratory prior to launch and calibration in the orbit. Some preliminary results on timing and spectral characteristics of a few X-ray binaries and other type of sources, are briefly discussed to demonstrate that the LAXPC instrument is performing as planned in the orbit.
Volume 42 All articles Published: 5 June 2021 Article ID 0032 PAYLOAD REVIEW
H. M. ANTIA P. C. AGRAWAL DHIRAJ DEDHIA TILAK KATOCH R. K. MANCHANDA RANJEEV MISRA KALLOL MUKERJEE MAYUKH PAHARI JAYASHREE ROY P. SHAH J. S. YADAV
The Large Area X-ray Proportional Counter (LAXPC) instrument on-board AstroSat has three nominally identical detectors for timing and spectral studies in the energy range of 3–80 keV. The performance of these detectors during the five years after the launch of AstroSat is described. Currently, only oneof the detector is working nominally. The variation in pressure, energy resolution, gain and background with time are discussed. The capabilities and limitations of the instrument are described. A brief account of available analysis software is also provided.
Volume 42 All articles Published: 11 June 2021 Article ID 0039 SCIENCE RESULTS
Multi-wavelength view of the galactic black-hole binary GRS 1716–249
SANDEEP K. ROUT SANTOSH V. VADAWALE E. AARTHY SHASHIKIRAN GANESH VISHAL JOSHI JAYASHREE ROY RANJEEV MISRA J. S. YADAV
The origins of X-ray and radio emissions during an X-ray binary outburst are comparatively better understood than those of ultraviolet, optical and infrared radiation. This is because multiple competing mechanisms – emission from intrinsic and irradiated disk, secondary star emission, synchrotron emissionfrom jet and/or non-thermal electron cloud, etc – peak in these mid-energy ranges. Ascertaining the true emission mechanism and segregating the contribution of different mechanisms, if present, is important for correct understanding of the energetics of the system and hence its geometry and other properties. We have studied the multi-wavelength spectral energy distribution of the galactic X-ray binary GRS 1716-249 ranging from near infrared ($5 \times 10^{-4}$ keV) to hard X-rays (120 keV) using observations from AstroSat,
Volume 42 All articles Published: 11 June 2021 Article ID 0040 PAYLOAD REVIEW
J. S. YADAV P. C. AGRAWAL RANJEEV MISRA JAYASHREE ROY MAYUKH PAHARI R. K. MANCHANDA
With its large effective area at hard X-rays, high time resolution and having co-aligned other instruments, AstroSat/LAXPC was designed to usher in a new era in rapid variability studies and wide spectral band measurements of the X-ray binaries. Over the last five years, the instrument has successfully achieved to a significant extent these Science goals. In the coming years, it is poised to make more important discoveries. This paper highlights the primary achievements of AstroSat/LAXPC in unraveling the behavior of black hole and neutron star systems and discusses the exciting possibility of the instrument’s contributionto future science.
Volume 42 All articles Published: 24 June 2021 Article ID 0055 SCIENCE RESULTS
An alternative scheme to estimate AstroSat/LAXPC background for faint sources
RANJEEV MISRA JAYASHREE ROY J. S. YADAV
An alternative scheme is described to estimate the layer 1 LAXPC 20 background for faint sources where the source contribution to the 50–80 keV count rate is less than 0.25 counts/s (15 milli-crabs or $6\times 10^{-11}$ ergs/s/cm$^2$). We consider 12 blank sky observations and based on their 50–80 keV count rate in 100 second time-bins, generate four template spectra which are then used to estimate the background spectrum and lightcurve for a given faint source observation. The variance of the estimated background subtracted spectra for the 12 blank sky observations is taken as the energy dependent systematic uncertainty which will dominate over the statistical one for exposures longer than 5 ks. The estimated 100 second time bin background lightcurve in the 4–20 keV band with a 3% systematic error matches with the blank sky ones.The 4–20 keV spectrum can be constrained for a source with flux $\gtrapprox$1 milli-crab. Fractional rms variability of 10% can be determined for a $\sim$5 milli-crab source lightcurve binned at 100 seconds. To illustrate the scheme, the lightcurves and spectra of three different blank sky observations, three AGN sources (Mrk 0926, Mrk 110, NGC 4593) and LMC X-1 are shown.
Volume 44, 2023
All articles
Continuous Article Publishing mode
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.