• E. AARTHY

      Articles written in Journal of Astrophysics and Astronomy

    • Multi-wavelength view of the galactic black-hole binary GRS 1716–249

      SANDEEP K. ROUT SANTOSH V. VADAWALE E. AARTHY SHASHIKIRAN GANESH VISHAL JOSHI JAYASHREE ROY RANJEEV MISRA J. S. YADAV

      More Details Abstract Fulltext PDF

      The origins of X-ray and radio emissions during an X-ray binary outburst are comparatively better understood than those of ultraviolet, optical and infrared radiation. This is because multiple competing mechanisms – emission from intrinsic and irradiated disk, secondary star emission, synchrotron emissionfrom jet and/or non-thermal electron cloud, etc – peak in these mid-energy ranges. Ascertaining the true emission mechanism and segregating the contribution of different mechanisms, if present, is important for correct understanding of the energetics of the system and hence its geometry and other properties. We have studied the multi-wavelength spectral energy distribution of the galactic X-ray binary GRS 1716-249 ranging from near infrared ($5 \times 10^{-4}$ keV) to hard X-rays (120 keV) using observations from AstroSat, Swift, and Mount Abu Infrared Observatory. Broadband spectral fitting suggests that the irradiated accretion disk dominates emission in ultraviolet and optical regimes. The near infrared emission exhibits some excess thanthe prediction of the irradiated disk model, which is most likely due to Synchrotron emission from jets as suggested by radio emission. Irradiation of the inner disk by the hard X-ray emission from the Corona also plays a significant role in accounting for the soft X-ray emission.

    • Sub-MeV spectroscopy with AstroSat-CZT imager for gamma ray bursts

      TANMOY CHATTOPADHYAY SOUMYA GUPTA VIDUSHI SHARMA SHABNAM IYYANI AJAY RATHEESH N. P. S. MITHUN E. AARTHY SOURAV PALIT ABHAY KUMAR SANTOSH V. VADAWALE A. R. RAO VARUN BHALERAO DIPANKAR BHATTACHARYA

      More Details Abstract Fulltext PDF

      Cadmium–Zinc–Telluride Imager (CZTI) onboard AstroSat has been a prolific Gamma-Ray Burst (GRB) monitor. While the 2-pixel Compton scattered events (100–300 keV) are used to extract sensitive spectroscopic information, the inclusion of the low-gain pixels ($\sim$20% of the detector plane) aftercareful calibration extends the energy range of Compton energy spectra to 600 keV. The new feature also allows single-pixel spectroscopy of the GRBs to the sub-MeV range which is otherwise limited to 150 keV. We also introduced a new noise rejection algorithm in the analysis (‘Compton noise’). These new additionsnot only enhances the spectroscopic sensitivity of CZTI, but the sub-MeV spectroscopy will also allow proper characterization of the GRBs not detected by Fermi. This article describes the methodology of single, Compton event and veto spectroscopy in 100–900 keV combined for the GRBs detected in the first year of operation. CZTI in last five years has detected $\sim$20 bright GRBs. The new methodologies, when applied on the spectral analysis for this large sample of GRBs, has the potential to improve the results significantly and help in better understanding the prompt emission mechanism.

    • The AstroSat mass model: Imaging and flux studies of off-axis sources with CZTI

      SUJAY MATE TANMOY CHATTOPADHYAY VARUN BHALERAO E. AARTHY ARVIND BALASUBRAMANIAN DIPANKAR BHATTACHARYA SOUMYA GUPTA KRISHNAN KUTTY N. P. S. MITHUN SOURAV PALIT A. R. RAO DIVITA SARAOGI SANTOSH VADAWALE AJAY VIBHUTE

      More Details Abstract Fulltext PDF

      The Cadmium Zinc Telluride Imager (CZTI) on AstroSat is a hard X-ray coded-aperture mask instrument with a primary field-of-view of $4.6^{\circ} \times 4.6^{\circ}$ (FWHM).The instrument collimators become increasinglytransparent at energies above $\sim$100 keV, making CZTI sensitive to radiation from the entire sky. While this has enabled CZTI to detect a large number of off-axis transient sources, calculating the source flux or spectrum requires knowledge of the direction and energy dependent attenuation of the radiation incident upon the detector. Here, we present a GEANT4-based mass model of CZTI and AstroSat that can be used to simulate the satellite response to the incident radiation, and to calculate an effective ‘‘response file’’ for converting the source counts into fluxes and spectra. We provide details of the geometry and interaction physics, and validate the model by comparing the simulations of imaging and flux studies with observations. Spectroscopic validation of the massmodel is discussed in a companion paper, Chattopadhyay et al. (J. Astrophys. Astr., vol. 42 (2021) https://doi.org/10.1007/s12036-021-09718-2).

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.