• D. Bhattacharya

      Articles written in Journal of Astrophysics and Astronomy

    • On the supernova remnants produced by pulsars

      G. Srinivasan D. Bhattacharya K. S. Dwarakanath

      More Details Abstract Fulltext PDF

      We conclude that pulsar-driven supernova remnants (SNRs) are extremely rare objects. Indeed an analysis of the known sample of plerions suggests a very low birthrate ∼ 1 in 240 years. Long-lived and bright plerions like the Crab nebula are likely to be produced only when the pulsar has an initial period ∼ 10–20 milliseconds and a field ∼ 1012 G. Such pulsars inside rapidly expanding shell remnants should also produce detectable plerions. The extreme rarity of SNRs with such hybrid morphology leads us to conclude that these pulsars must have been born with an initial period larger than ∼ 35–70 milliseconds.

    • Has the crab pulsar magnetic field grown after its birth?

      D. Bhattacharya C. S. Shukre

      More Details Abstract Fulltext PDF

      We investigate the evolution of rotation period and spindown age of a pulsar whose surface magnetic field undergoes a phase of growth. Application of these results to the Crab pulsar strongly indicates that its parameters cannot be accounted for by the field growth theories.

    • Ionized gas towards galactic centre — Constraints from low-frequency recombination lines

      K. R. Anantharamaiah D. Bhattacharya

      More Details Abstract Fulltext PDF

      Observations of the H272α recombination line towards the galactic centre show features near VLSR= 0, −50 and + 36 kms−1. We have combined the parameters of these features with the available H166α measurements to obtain the properties of the ionized gas present along the line of sight and also in the ‘3 kpc arm’. For the line-of-sight ionized gas we get an electron density around 7 cm−3 and a pathlength through it ∼ 10–60 pc. The emission measure and the electron temperature are in the range 500–2900 pc cm−6 and 2000–6000 K. respectively. The ionized gas in the 3 kpc arm has an electron density of 30 cm−3 and extends over 9 pc along the line of sight if we assume an electron temperature of 104 K. Using the available upper limit to the intensity of the H351α recombination line, we show that the distributed ionized gas responsible for the dispersion of pulsar signals should have a temperature >4500 K. and a minimum filling factor of 20 per cent. We also show that recombination lines from the ‘warm ionized’ gas proposed by McKee & Ostriker (1977) should be detectable in the frequency range 100–150 MHz towards the galactic centre with the sensitivity available at present.

    • On the morphology of supernova remnants with pulsars

      D. Bhattacharya

      More Details Abstract Fulltext PDF

      One of the intriguing aspects of supernova remnants is their morphology. While the majority of them look like hollow shells, a few, called plerions, are centrally filled like the Crab nebula, and some have a shell-plerion combination morphology. The centrally-filled component in these remnants is believed to be powered by a central pulsar. In this paper we present results of model calculations of the evolution of surface brightness and morphology of supernova remnants containing pulsars. We discuss how the morphology of a supernova remnant will depend on the velocity of expansion, the density of the ambient medium into which it is expanding, and the initial period and magnetic field strength of the central pulsar

    • Gamma rays from millisecond pulsars

      D. Bhattacharya G Srinivasan

      More Details Abstract Fulltext PDF

      We estimate the contribution of millisecond pulsars to the diffuse gamma-ray background of the Galaxy, and show that a significant fraction of the Galactic background may originate from them. A small number of the unidentified COS-B point sources may, in fact, be millisecond pulsars. It is argued that several hundred millisecond pulsars may be detectable as point sources by the GRO satellite

    • A numerical survey of neutron star crustal density profiles

      B. Datta A. V. Thampan D. Bhattacharya

      More Details Abstract Fulltext PDF

      An accurate numerical survey of the density profiles corresponding to the crusts of neutron stars for representative equation of state models is presented. This will find application in calculations of thermal and magnetic evolution of neutron stars.

    • The Central Point Source in G76.9+1.0

      V. R. Marthi J. N. Chengalur Y. Gupta G. C. Dewangan D. Bhattacharya

      More Details Abstract Fulltext PDF

      We describe the serendipitous discovery of a very steep-spectrum radio point source in low-frequency Giant Metrewave Radio Telescope (GMRT) images of the supernova remnant (SNR) G76.9+1.0. The steep spectrum, as well as the location of the point source near the centre of this SNR confirm that this indeed is the pulsar J2022+3842. Archival Chandra X-ray data shows a point source coincident with the radio point source. However, no pulsed radio emission was detected despite deep searches at 610 MHz and 1160 MHz – which can be understood to be due to temporal broadening of the pulses. Weak pulsed emission has indeed been seen at 2 GHz with the Green Bank Telescope (GBT), establishing the fact that scattering is responsible for its non-detection at low radio frequencies. We underline the usefulness of low-frequency radio imaging as a good technique to prospect for pulsar candidates.

    • The Cadmium Zinc Telluride Imager on AstroSat

      V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna A. P. K. Kutty J. P. Malkar M. H. Patil Y. K. Arora S. Sinha P. Priya Essy Samuel S. Sreekumar P. Vinod N. P. S. Mithun S. V. Vadawale N. Vagshette K. H. Navalgund K. S. Sarma R. Pandiyan S. Seetha K. Subbarao

      More Details Abstract Fulltext PDF

      The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI’s namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17′ over a 4.6× 4.6 (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ∼100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

    • Charged Particle Monitor on the AstroSat Mission

      A. R. Rao M. H. Patil Yash Bhargava Rakesh Khanna M. K. Hingar A. P. K. Kutty J. P. Malkar Rupal Basak S. Sreekumar Essy Samuel P. Priya P. Vinod D. Bhattacharya V. Bhalerao S. V. Vadawale N. P. S. Mithun R. Pandiyan K. Subbarao S. Seetha K. Suryanarayana Sarma

      More Details Abstract Fulltext PDF

      Charged Particle Monitor (CPM) on-board the Astrosat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using gamma-rays from radioactive sources and protons from particle accelerators. Based on the ground calibration results, energy deposition above 1 MeV are accepted and particle counts are recorded. It is found that CPM counts are steady and the signal for the onset and exit of South Atlantic Anomaly (SAA) region are generated in a very reliable and stable manner.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.