BIMAN B. NATH
Articles written in Journal of Astrophysics and Astronomy
Volume 22 Issue 1 March 2001 pp 21-34
Using HI to probe large scale structures at z∼3
Somnath Bharadwaj Biman B. Nath Shiv K. Sethi
The redshifted 1420 MHz emission from the HI in unresolved damped Lyman-α clouds at high z will appear as a background radiation in low frequency radio observations. This holds the possibility of a new tool for studying the universe at high-
Volume 23 Issue 1-2 March 2002 pp 101-105
Heating of the intracluster medium by quasar outflows
Suparna Roychowdhury Biman B. Nath
We study the possibility of quasar outflows in clusters and groups of galaxies heating the intracluster gas in order to explain the recent observation of excess entropy in this gas. We show that radio galaxies alone cannot provide the energy required to explain the observations but the inclusion of Broad Absorption Line (BAL) outflows can do so, and that in this scenario most of the heating takes place at
Volume 32 Issue 4 December 2011 pp 545-548
Active Galactic Nuclei Feedback and Clusters
The Intracluster Medium (ICM) is believed to have been affected by feedback from Active Galactic Nuclei (AGN) and/or supernovae-driven winds. These sources are supposed to have injected entropy into the ICM gas. The recently determined universal pressure profile of the ICM gas has been used and after comparing with the entropy profile of the gas from gravitational effects of the dark matter halo, the additional entropy injected by non-gravitational sources, as a function of the total cluster mass is determined. The current observational data of red-shift evolution of cluster scaling relation is shown that allow models in which the entropy injection decreases at high red-shift.
Volume 38 Issue 4 December 2017 Article ID 0068 Research Article
Asif Iqbal Ruta Kale Subhabrata Majumdar Biman B. Nath Mahadev Pandge Prateek Sharma Manzoor A. Malik Somak Raychaudhury
Active Galactic Nuclei (AGN) feedback is regarded as an important non-gravitational process in galaxy clusters, providing useful constraints on large-scale structure formation. It modifies the structure and energetics of the intra-cluster medium (ICM) and hence its understanding is crucially needed in order to use clusters as high precision cosmological probes. In this context, particularly keeping in mind the upcoming high quality radio data expected from radio surveys like Square Kilometre Array (SKA) with its higher sensitivity, high spatial and spectral resolutions, we review our current understanding of AGN feedback, its cosmological implications and the impact that SKA can have in revolutionizing our understanding of AGN feedback in large-scale structures. Recent developments regarding the AGN outbursts and its possible contribution to excess entropy in the hot atmospheres of groups and clusters, its correlation with the feedback energy in ICM, quenching of cooling flows and the possible connection between cool core clusters and radio mini-halos, are discussed. We describe current major issues regarding modeling of AGN feedback and its impact on the surrounding medium. With regard to the future of AGN feedback studies, we examine the possible breakthroughs that can be expected from SKA observations. In the context of cluster cosmology, for example, we point out the importance of SKA observations for cluster mass calibration by noting that most of
Volume 44 All articles Published: 27 April 2023 Article ID 0038 SCIENTIFIC REVIEW
Exploring diffuse radio emission in galaxy clusters and groups with uGMRT and SKA
SURAJIT PAUL RUTA KALE ABHIRUP DATTA ARITRA BASU SHARANYA SUR VIRAL PAREKH PRATEEK GUPTA SWARNA CHATTERJEE SAMEER SALUNKHE ASIF IQBAL MAMTA PANDEY-POMMIER RAMIJ RAJA MAJIDUL RAHAMAN SOMAK RAYCHAUDHURY BIMAN B. NATH SUBHABRATA MAJUMDAR
Diffuse radio emission has been detected in a considerable number of galaxy clusters and groups, revealing the presence of pervasive cosmic magnetic fields, and of relativistic particles in the large scale structure of the Universe. Since the radio emission in galaxy systems is faint and its spectrum is steep, itsobservations are largely limited by the instrument sensitivity and frequency of observation, leading to a dearth of information, more so for lower-mass systems. The recent commissioning or upgrade of several large radio telescope arrays, particularly at the low frequency bands (<GHz) is, therefore, a significant step forward. The unprecedented sensitivity of these new instruments, aided by the development of advanced calibration and imaging techniques, have helped in achieving unparalleled image quality and revolutionised the study of cluster-scale radio emission. At the same time, the development of state-of-the-art numerical simulations and the availability of supercomputing facilities have paved the way for high-resolution numerical modelling of radio emission, and the structure of the cosmic magnetic fields, associated with large-scale structures inthe Universe, leading to predictions matching the capabilities of observational facilities. In view of these rapidly-evolving developments in modeling and observations, in this review, we summarise the role of new telescopearrays and the development of advanced imaging techniques and discuss the range of detections of various kinds of cluster radio sources, both in dedicated surveys as well as in numerous individual studies. We pay specific attention to the kinds of diffuse radio structures that have been able to reveal the underlying physics in recent observations. In particular, we discuss observations of large-scale sections of the cosmic web in the form of supercluster filaments, and studies of emission in low-mass systems, such as poor clusters and groups ofgalaxies, and of ultra-steep spectrum sources, the last two being notably aided by low-frequency observations and high sensitivity of the instruments being developed. We also discuss and review the current theoreticalunderstanding of various diffuse radio sources in clusters and the associated magnetic field and polarisation in view of the current observations and simulations. As the statistics of detections improve along with our theoretical understanding, we update the source classification schemes based on the intrinsic properties of these sources. We conclude by summarising the role of the upgraded GMRT (uGMRT) and our expectations from the upcoming Square Kilometre Array (SKA) observatories.
Volume 44, 2023
All articles
Continuous Article Publishing mode
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.