• B. Ravindra

      Articles written in Journal of Astrophysics and Astronomy

    • Analysis of enhanced velocity signals observed during solar flares

      Brajesh Kumar B. Ravindra

      More Details Abstract Fulltext PDF

      Solar flares are known to release a large amount of energy. It is believed that the flares can excite velocity oscillations in active regions. We report here the changes in velocity signals in three active regions which have produced large X-class flares. The enhanced velocity signals appeared during the rise time of the GOES soft X-ray flux. These signals are located close to the vicinity of the hard X-ray source regions as observed with RHESSI. The power maps of the active region show enhancement in the frequency regime 5–6.5 mHz, while there is feeble or no enhancement of these signals in 2–4 mHz frequency band. High energy particles with sufficient momentum seem to be the cause for these observed enhanced velocity signals.

    • Inductive Magnetic Footpoint Tracking by Combining the Minimum Energy Fit with the Local Correlation Tracking and Doppler Velocity

      B. Ravindra D. W. Longcope

      More Details Abstract Fulltext PDF

      Time-dependent magneto-hydrodynamic simulations of active region coronal magnetic field require the underlying photospheric magnetic footpoint velocities. The minimum energy fit (MEF) is a new velocity inversion technique to infer the photospheric magnetic footpoint velocities using a pair of vector magnetograms, introduced by Longcope (2004). The MEF selects the smallest overall flow from several consistent flows by minimizing an energy functional. The inferred horizontal and vertical flow fields by the MEF can be further constrained by incorporating the partial or imperfect velocity information obtained through independent means. This hybrid method is expected to give a velocity close to the true magnetic footpoint velocity. Here, we demonstrate that a combination of the MEF, the local correlation tracking (LCT) and Doppler velocity is capable of inferring the velocity close to the photospheric flow.

    • Installation of solar chromospheric telescope at the Indian Astronomical Observatory, Merak

      B. RAVINDRA PRABHU KESAVAN K. C. THULASIDHAREN M. RAJALINGAM K. SAGAYANATHAN P. U. KAMATH NAMGYAL DORJEY ANGCHUK DORJEE P. M. M. KEMKAR TSEWANG DORJAI RAVINDER K. BANYAL

      More Details Abstract Fulltext PDF

      We report the observations of the solar chromosphere from a newly commissioned solar telescope at the incursion site near Pangong Tso lake in Merak (Leh/Ladakh). This new Hα telescope at the Merak site is identical to the Kodaikanal H$_{\alpha}$ telescope. The telescope was installed in the month of August 2017 at the Merak site. The telescope consists of a 20-cm doublet lens with additional re-imaging optics. A Lyot filter with 0.5 å passband isolates the Balmer line of the hydrogen spectra to make the observations of the solarchromosphere. The observations made in Hα wavelength delineates the magnetic field directions at the sunspot and the quiet regions. A CCD detector records the images of the chromosphere with a pixel resolution of 0.27$''$and covers 9.2$'$ field-of-view. This telescope has a good guiding system that keeps the FoV in the intended position. We report the development of control software for tuning the filter unit, control detector system, observations and calibration of the data to make it useful for the scientific community. Some preliminary results obtained from the Merak H$_{\alpha}$ telescope are also presented. This high altitude facility is a timely addition to regularly obtain H$_{\alpha}$ images around the globe.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.