• A. Omar

      Articles written in Journal of Astrophysics and Astronomy

    • GMRTHI observations of the Eridanus group of galaxies

      A. Omar K. S. Dwarakanath

      More Details Abstract Fulltext PDF

      The GMRTHI 21 cm-line observations of galaxies in the Eridanus group are presented. The Eridanus group, at a distance of ≈ 23 Mpc, is a loose group of ≈200 galaxies. The group extends to more than 10 Mpc in projection. The velocity dispersion of the galaxies in the group is ≈240 km s−1. The galaxies are clustered into different sub-groups. The overall population mix of the group is 30% (E + S0) and 70% (Sp + Irr). The observations of 57 Eridanus galaxies were carried out with the GMRT for ≈ 200 h. HI emission was detected from 31 galaxies. The channel rms of ≈ 1 mJy beam−1 was achieved for most of the image-cubes made with 4 h of data. The corresponding HI column density sensitivity (3σ) is ≈ 1 × 1020 cm−2 for a velocity-width of ≈ 13.4 km s−1. The 3σ detection limit of HI mass is ≈ 1.2 X 107 Mpd for a line-width of 50 km s−1. Total HI images, HI velocity fields, global HI line profiles, HI mass surface densities, HI disk parameters and HI rotation curves are presented. The velocity fields are analysed separately for the approaching and the receding sides of the galaxies. These data will be used to study the HI and the radio continuum properties, the Tully-Fisher relations, the dark matter halos, and the kinematical and HI lopsidedness in galaxies.

    • TheHI content of the Eridanus group of galaxies

      A. Omar K. S. Dwarakanath

      More Details Abstract Fulltext PDF

      The HI content of galaxies in the Eridanus group is studied using the GMRT observations and the HIPASS data. A significant HI deficiency up to a factor of 2–3 is observed in galaxies in the high galaxy density regions. The HI deficiency in galaxies is observed to be directly correlated to the local projected galaxy density, and inversely correlated to the line-of-sight radial velocity. Furthermore, galaxies with larger optical diameters are predominantly in the lower galaxy density regions. It is suggested that the HI deficiency in Eridanus is due to tidal interactions. In some galaxies, evidences of tidal interactions are seen. An important implication is that significant evolution of galaxies can take place in the group environment. In the hierarchical way of formation of clusters via mergers of groups, a fraction of the observed HI deficiency in clusters could have originated in groups. The co-existence of S0s and severely HI deficient galaxies in the Eridanus group suggests that tidal interaction is likely to be an effective mechanism for transforming spirals to S0s.

    • Radio continuum and far-infrared emission from the galaxies in the Eridanus group

      A. Omar K. S. Dwarakanath

      More Details Abstract Fulltext PDF

      The Eridanus galaxies follow the well-known radio—FIR correlation. The majority (70%) of these galaxies have their star formation rates below that of the Milky Way. The galaxies that have a significant excess of radio emission are identified as low luminosity AGNs based on their radio morphologies obtained from the GMRT observations. There are no powerful AGNs (L20cm > 1023 W Hz−1) in the group. The two most far-infrared and radio luminous galaxies in the group have optical and HI morphologies suggestive of recent tidal interactions. The Eridanus group also has two far-infrared luminous but radio-deficient galaxies. It is believed that these galaxies are observed within a few Myr of the onset of an intense star formation episode after being quiescent for at least a 100 Myr. The upper end of the radio luminosity distribution of the Eridanus galaxies (L20cm ∼ 1022 W Hz−1) is consistent with that of the field galaxies, other groups, and late-type galaxies in nearby clusters.

    • The Tully-Fisher relations of the Eridanus group of galaxies

      A. Omar K. S. Dwarakanath

      More Details Abstract Fulltext PDF

      The Tully-Fisher (TF) or the luminosity-linewidth relations of the galaxies in the Eridanus group are constructed using the HI rotation curves and the luminosities in the optical and in the near-infrared bands. The slopes of the TF relations (absolute magnitudevs log2Vflat) are −8.6 ± 1.1, −10.0 ±1.5, −10.7 ±2.1, and −9.7 ±1.3 in the R, J, H, and K bands respectively for galaxies having flat HI rotation curves. These values of the slopes are consistent with those obtained from studies of other groups and clusters. The scatter in the TF relations is in the range 0.5-1.1 mag in different bands. This scatter is considerably larger compared to those observed in other groups and clusters. It is suggested that the larger scatter in the TF relations for the Eridanus group is related to the loose structure of the group. If the TF relations are constructed using the baryonic mass (stellar +HI + Helium mass) instead of the stellar luminosity, nearly identical slopes are obtained in the R and in the near-infrared bands. The baryonic TF (baryonic massvs log2Vflat) slope is in the range 3.5–4.1.

    • Devasthal Fast Optical Telescope Observations of Wolf–Rayet Dwarf Galaxy Mrk 996

      S. Jaiswal A. Omar

      More Details Abstract Fulltext PDF

      The Devasthal Fast Optical Telescope (DFOT) is a 1.3 meter aperture optical telescope, recently installed at Devasthal, Nainital. We present here the first results using an H𝛼 filter with this telescope on a Wolf–Rayet dwarf galaxy Mrk 996. The instrumental response and the H𝛼 sensitivity obtained with the telescope are (3.3 ± 0.3) × 10-15 erg s-1 cm-2/counts s-1 and 7.5 × 10-17 erg s-1 cm-2 arcsec-2 respectively. The H𝛼 flux and the equivalent width for Mrk 996 are estimated as (132 ± 37) × 10-14 erg s-1 cm-2 and ∼ 96 Å respectively. The star formation rate is estimated as 0.4 ± 0.1𝑀 yr-1. Mrk 996 deviates from the radio-FIR correlation known for normal star forming galaxies with a deficiency in its radio continuum. The ionized gas as traced by Hα emission is found in a disk shape which is misaligned with respect to the old stellar disk. This misalignment is indicative of a recent tidal interaction in the galaxy. We believe that galaxy–galaxy tidal interaction is the main cause of the WR phase in Mrk 996.

    • Optical detection of a GMRT-detected candidate high-redshift radio galaxy with 3.6-m Devasthal optical telescope

      A. OMAR A. SAXENA K. CHAND A. PASWAN H. J. A. RÖTTGERING K. J. DUNCAN T. S. KUMAR B. KRISHNAREDDY J. PANT

      More Details Abstract Fulltext PDF

      We report optical observations of TGSS J1054 $+$ 5832, a candidate high-redshift ($z = 4.8 \pm 2$) steep-spectrum radio galaxy, in $r$ and $i$ bands, using the faint object spectrograph and camera mounted on 3.6-m Devasthal Optical Telescope (DOT). The source previously detected at 150 MHz from Giant Meterwave Radio Telescope (GMRT) and at 1420 MHz from Very Large Array has a known counterpart in near-infrared bands with $K$-band magnitude of AB 22. The source is detected in $i$-band with AB24.3 $\pm$ 0.2 magnitude in theDOT images presented here. The source remains undetected in the $r$-band image at a 2.5$\sigma$ depth of AB 24.4 mag over an $1.2^{\prime\prime}\times 1.2^{\prime\prime}$ aperture. An upper limit to $i−K$ color is estimated to be $\sim$2.3, suggesting youthfulness of the galaxy with active star formation. These observations highlight the importance and potential of the 3.6-mDOT for detections of faint galaxies.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.