• A. DEVARAJ

      Articles written in Journal of Astrophysics and Astronomy

    • In-orbit performance of UVIT over the past 5 years

      S. K. GHOSH P. JOSEPH A. KUMAR J. POSTMA C. S. STALIN A. SUBRAMANIAM S. N. TANDON I. V. BARVE A. DEVARAJ K. GEORGE V. GIRISH J. B. HUTCHINGS P. U. KAMATH S. KATHIRAVAN J. P. LANCELOT D. LEAHY P. K. MAHESH R. MOHAN S. NAGABHUSHANA A. K. PATI N. KAMESWARA RAO K. SANKARASUBRAMANIAN P. SREEKUMAR S. SRIRAM

      More Details Abstract Fulltext PDF

      Over the last 5 years, UVIT has completed observations of more than 500 proposals with $\sim$800 unique pointings. In addition, regular planned monitoring observations have been made and from their analysis various key parameters related to in orbit performance of UVIT have been quantified. The sensitivities of the UV channels have remained steady indicating no effect of potential molecular contamination confirming the adequacy of all the protocols implemented for avoiding contamination. The quality of the PSF through the years confirms adequacy of thermal control measures. The early calibrations obtained during the Performance Verification (PV) phase have been further revised for more subtle effects. These include flat fields and detector distortions with greater precision. The operations of UVIT have also evolved through inorbit experience, e.g. tweaking of operational sequencing, protocol for recovery from bright object detection (BOD) shutdowns, parameters for BOD thresholds, etc. Finally, some effects of charged particle hits on electronics led to optimised strategy for regular resetting. The Near-UV channel was lost in one of suchoperations. All the above in-orbit experiences are presented here.

    • Performance of the UVIT Level-2 pipeline

      S. K. GHOSH S. N. TANDON P. JOSEPH A. DEVARAJ D. S. SHELAT C. S. STALIN

      More Details Abstract Fulltext PDF

      Performance of the Level-2 pipeline, which translates the UVIT data created by the ISRO’s ground segment processing systems (Level-1) into astronomer ready scientific data products, is described. This pipeline has evolved significantly from experiences during the in orbit mission. With time, the detectormodules of UVIT developed certain defects which led to occasional corruption of imaging and timing data. This article will describe the improvements and mitigation plans incorporated in the pipeline and report its efficacy and quantify the performance.

    • An automated pipeline for Ultra-Violet Imaging Telescope

      S. K. GHOSH S. N. TANDON S. K. SINGH D. S. SHELAT P. TAHLANI A. K. SINGH T. P. SRINIVASAN P. JOSEPH A. DEVARAJ K. GEORGE R. MOHAN J. POSTMA C. S. STALIN

      More Details Abstract Fulltext PDF

      We describe a versatile pipeline for processing the data collected by the Ultra-Violet Imaging Telescope (UVIT) on board Indian multi-wavelength astronomical satellite ASTROSAT. The UVIT instrument carries out simultaneous astronomical imaging through selected filters/gratings in far-ultra-violet (FUV), near-ultra-violet and visible (VIS) bands of the targeted circular sky field ($\sim$0.5$^{\circ}$ dia). This pipeline converts the data (Level 1) emanating from UVIT in their raw primitive format supplemented by inputs from the spacecraft sub-systems into UV sky images (and slitless grating spectra) and associated products readily usable by astronomers (Level 2). The primary products include maps of Intensity (rate of photon arrival), error on Intensity and effective Exposure. The pipeline is open source, extensively user configurable with many selectable parameters and its execution is fully automated. The key ingredients of the pipeline include extraction of drift in the pointing of the spacecraft, and disturbances in pointing due to internal movements; application of various corrections to measured position in the detector for each photon – e.g., differential pointing with respect to a reference frame for shift and add operation, systematic effects and artefacts in the optics of the telescopes and detectors, exposure tracking on the sky, alignment of sky products from multiepisodeexposures to generate a consolidated set and astrometry. Detailed logs of operations and intermediate products for every processing stage are accessible via user-selectable options. While large number of selectable parameters are available for the user, a well characterized ‘standard default’ set is used for executing this pipeline at the Payload Operation Centre (POC) for UVIT and selected products are archivedand disseminated by the Indian Space Research Organization (ISRO) through its ISSDC portal.

  • Journal of Astrophysics and Astronomy | News

    • Continuous Article Publication

      Posted on January 27, 2016

      Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately. All these have helped shorten the publication time and have improved the visibility of the articles.

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.