• Zongjun Pu

      Articles written in Journal of Genetics

    • Quality of synthetic hexaploid wheat containing null alleles at Glu-A1 and Glu-B1 loci

      Xinkun Hu Shoufen Dai Zhien Pu Dengcai Liu Zongjun Pu Jiaqi Jiang Yuming Wei Bihua Wu Xiujin Lan Youliang Zheng Zehong Yan

      More Details Abstract Fulltext PDF

      Triticum turgidum ssp. dicoccon PI94668 and PI349045 were identified as containing null alleles at Glu-A1 and Glu-B1 loci in previous investigation. Sequencing of the respective HMW-GS genes Ax, Bx, Ay and By in both accessions indicated equal DNA lengths with gene silencing caused by 1 to 4 in-frame stop codon(s) in the open reading frames. Six synthetic hexaploid wheat lines were produced by crossing PI94668 or PI349045 with six Aegilops tauschii by spontaneous chromosome doubling of unreduced gametes. As expected, these amphiploids had three different HMW-GS: Dx 3.1t + Dy11*t, Dx2.1t +10t and Dx2t + Dy12t in Glu-D1 but double nulls in Glu-A1 and Glu-B1. Quality tests showed that most quality parameters in two T. turgidum ssp. dicoccon parents were very low due to the lack of HMW-GSs. However, incorporation of HMW-GS from Ae. tauschii in six synthetic hexaploid wheat lines significantly increased most quality related parameters. The potential values of these wheat lines in improving the quality of wheat are discussed.

    • Molecular mapping of a stripe rust resistance gene in wheat line C51

      Jianmin Zheng Zehong Yan Li Zhao Shizhao Li Zengyan Zhang Resewarne Garry Wuyun Yang Zongjun Pu

      More Details Abstract Fulltext PDF

      Stripe rust, a major disease in areas where cool temperatures prevail, can strongly influence grain yield. To control this disease, breeders have incorporated seedling resistance genes from a variety of sources outside the primary wheat gene pool. The wheat line C51, introduced from the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, confers resistance to all races of Puccinia striiformis f. sp. tritici (PST) in China. To map the resistant gene(s) against stripe rust in wheat line C51, 212 F8 recombinant inbred lines (RILs) derived from the cross X440 × C51 were inoculated with Chinese PST race CYR33 (Chinese yellow rust, CYR) in the greenhouse. The result showed that C51 carried a single dominant gene for resistance (designated YrC51) to CYR33. Simple sequence repeat (SSR) and resistance gene-analogue polymorphism (RGAP) markers that were polymorphic between the parents were used for genotyping the 212 F8 RILs. YrC51 was closely linked to two SSR loci on chromosome 2BS with genetic distances of 5.1 cM (Xgwm429) and 7.2 cM (Xwmc770), and to three RGAP markers C51R1 (XLRR For / NLRR For), C51R2 (CLRR Rev / Cre3LR-F) and C51R3 (Pto kin4/ NLRRINV2) with genetic distances of 5.6, 1.6 and 9.2 cM, respectively. These RGAP-linked markers were then converted into STS markers.Among them, one STS marker, C51STS-4, was located at a genetic distance of 1.4 cM to YrC51 and was closely associated with resistance when validated in several populations derived from crosses between C51 and Sichuan cultivars. The results indicated that C51STS-4 can be used for marker assisted selection (MAS) and would facilitate the pyramiding of YrC51 with other genes for stripe rust resistance.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.