Xingfeng Li
Articles written in Journal of Genetics
Volume 90 Issue 3 December 2011 pp 409-425 Research Article
Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level?
Fa Cui Anming Ding Jun Li Chunhua Zhao Xingfeng Li Deshun Feng Xiuqin Wang Lin Wang Jurong Gao Honggang Wang
Kernel dimensions (KD) contribute greatly to thousand-kernel weight (TKW) in wheat. In the present study, quantitative trait loci (QTL) for TKW, kernel length (KL), kernel width (KW) and kernel diameter ratio (KDR) were detected by both conditional and unconditional QTL mapping methods. Two related F8:9 recombinant inbred line (RIL) populations, comprising 485 and 229 lines, respectively, were used in this study, and the trait phenotypes were evaluated in four environments. Unconditional QTL mapping analysis detected 77 additive QTL for four traits in two populations. Of these, 24 QTL were verified in at least three trials, and five of them were major QTL, thus being of great value for marker assisted selection in breeding programmes. Conditional QTL mapping analysis, compared with unconditional QTL mapping analysis, resulted in reduction in the number of QTL for TKW due to the elimination of TKW variations caused by its conditional traits; based on which we first dissected genetic control system involved in the synthetic process between TKW and KD at an individual QTL level. Results indicated that, at the QTL level, KW had the strongest influence on TKW, followed by KL, and KDR had the lowest level contribution to TKW. In addition, the present study proved that it is not all-inclusive to determine genetic relationships of a pairwise QTL for two related/causal traits based on whether they were co-located. Thus, conditional QTL mapping method should be used to evaluate possible genetic relationships of two related/causal traits.
Volume 91 Issue 3 December 2012 pp 303-312 Research Article
Conditional QTL mapping of protein content in wheat with respect to grain yield and its components
Lin Wang Fa Cui Jinping Wang Li Jun Anming Ding Chunhua Zhao Xingfeng Li Deshun Feng Jurong Gao Honggang Wang
Grain protein content in wheat (
Volume 95 Issue 2 June 2016 pp 433-439 RESEARCH NOTE
ZHENQIAO SONG JIANHUA WANG XINGFENG LI
Volume 96 Issue 1 March 2017 pp 165-169 RESEARCH NOTE
FANG HE YINGUANG BAO XIAOLEI QI YINGXUE MA XINGFENG LI HONGGANG WANG
Thinopyrum ponticum (2n = 70) serves as a valuable gene pool for wheat improvement. Line SN0224, derived from crosses between Th. ponticum and the common wheat cultivar Yannong15, was identified in the present study. Cytogenetic observations showed that SN0224 contains 42 chromosomes in the root-tip cells and 21 bivalents in the pollen mother cells, therebydemonstrating its cytogenetic stability. Genomic in situ hybridization, probed with the total genomic DNA of Th. ponticum, produced hybridization signals in the distal region of two wheat chromosome arms. After inoculation with the Blumeriagraminis f. sp. tritici (Bgt) isolates, SN0224 exhibited immunity. Segregation in F1s and F2s from the cross SN0224/cv. Huixianhong indicated that SN0224 carries a single dominant gene for powdery mildew (Pm) resistance, which was temporarily designated PmSn0224. Three markers Barc212, Xwmc522 and Xbarc1138 were detected to be linked with PmSn0224. Based on the locations of the markers, PmSn0224 was located on the chromosome 2A. None of the three markers above is linked with the previously reported PM resistance genes on chromosome 2A, and none of the previously reported PM resistance genes on chromosome 2A is related to Th. ponticum. Therefore, PmSn0224 is likely a novel gene putatively from Th. ponticum.
Volume 102, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.