Articles written in Journal of Genetics

    • Roles of the troponin isoforms during indirect flight muscle development in Drosophila

      Salam Herojeet Singh Prabodh Kumar Nallur B. Ramachandra Upendra Nongthomba

      More Details Abstract Fulltext PDF

      Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, amajority of themyofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

    • Correction to: Roles of the troponin isoforms during indirect flight muscle development in Drosophila


      More Details Abstract Fulltext PDF
    • Beadex, a homologue of the vertebrate LIM domain only protein, is a novel regulator of crystal cell development in Drosophila melanogaster


      More Details Abstract Fulltext PDF

      Haematopoiesis is a complex process in which the regulatory mechanisms of several implicated transcription factors remain uncertain. Drosophila melanogaster is an excellent model to resolve the unanswered questions about the blood cell development. This study describes the role of Beadex, a Drosophila homologue of LIM domain only 2 (LMO2), in haematopoiesis. Mutants of Beadex were analysed for blood cell abnormalities. Crystal cells, a subset of haemocytes, were significantly more in Beadex hypermorphic flies. Similarly, Beadex misexpression in prohemocytes altered the crystal cell numbers. Stage-specific misexpression analyses demonstrated that Beadex functions after the prohemocytes enter the crystal cell lineage. We also discovered that Pannier–U-shaped complex is a negative regulator of the crystal cell differentiation and is possibly negatively regulated by Beadex through its interaction with Pannier. We, therefore, suggest the mechanism of two novel regulators of crystal cell specification—Beadex and Pannier—during Drosophila haematopoiesis.

    • Is the fundamental pathology in Duchenne’s muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres?


      More Details Abstract Fulltext PDF

      Duchenne muscular dystrophy (DMD) is the most common form of progressive childhood muscular dystrophy associated with weakness of limbs, loss of ambulation, heart weakness and early death. The mutations causing either loss-of-expression or function of the full-length protein dystrophin (Dp427) from the DMD gene are responsible for the disease pathology. Dp427 forms a part of the large dystroglycan complex, called DAPC, in the sarcolemma, and its absence derails muscle contraction. Muscle biopsies from DMD patients show an overactivation of excitation-contraction-coupling (ECC) activable calcium incursion, sarcolemmal ROS production, NHE1 activation, IL6 secretion, etc. The signalling pathways, like Akt/PBK, STAT3, p38MAPK, and ERK1/2, are also hyperactive in DMD. These pathways are responsible for post-mitotic trophic growth and metabolic adaptation, in response to exercise in healthy muscles, butcause atrophy and cell death in dystrophic muscles. We hypothesize that the metabolic background of repressed glycolysis in DMD, as opposed to excess glycolysis seen in cancers or healthy contracting muscles, changes the outcome of these ‘growth pathways’. The reduced glycolysis has been considered a secondary outcome of the cytoskeletal disruptions seen in DMD. Given the cytoskeleton-crosslinking ability of the glycolytic enzymes, we hypothesize that the failure of glycogenolytic and glycolytic enzymes to congregate is the primarypathology, which then affects the subsarcolemmal cytoskeletal organization in costameres and initiates the pathophysiology associated with DMD, giving rise to the tissue-specific differences in disease progression between muscle, heart and brain. The lacunae in the regulation of the key components of the hypothesized metabolome, and the limitations of this theory are deliberated. The considerations for developing future therapies based on known pathological processes are also discussed.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.