• Toru Shimada

      Articles written in Journal of Genetics

    • Molecular analysis of sex chromosome-linked mutants in the silkworm Bombyx mori

      Tsuguru Fujii Hiroaki Abe Toru Shimada

      More Details Abstract Fulltext PDF

      In Bombyx mori, the W chromosome determines the female sex. A few W chromosome-linked mutations that cause masculinization of the female genitalia have been found. In female antennae of a recently isolated mutant, both female-type and male-type Bmdsx mRNAs were expressed, and BmOr1 (bombykol receptor) and BmOr3 (bombykal receptor), which are predominantly expressed in the antennae of male moths, were expressed about 50 times more abundantly in the antennae of mutant females than in those of normal females. These mutants are valuable resources for the molecular analysis of the sex-determination system. Besides the Fem gene, the quantitative egg size-determining gene Esd is thought to be present on the W chromosome, based on the observation that ZWW triploid moths produce larger eggs than ZZW triploids. The most recently updated B. mori genome assembly comprises 20.5 Mb of Z chromosome sequence. Using these sequence data, responsible genes or candidate genes for four Z-linked mutants have been reported. The od (distinct oily) and spli (soft and pliable) are caused by mutation in BmBLOS2 and Bmacj6, respectively. Bmap is a candidate gene for $V_g$ (vestigial). Similarly, Bmprm is a candidate gene for Md (muscle dystrophy), causing abnormal development of indirect flight muscle.

    • Novel non-autonomous transposable elements onWchromosome of the silkworm, Bombyx mori

      Hiroaki Abe Tsuguru Fujii Toru Shimada Kazuei Mita

      More Details Abstract Fulltext PDF

      The sex chromosomes of the silkworm Bombyx mori are designated ZW(XY) for females and ZZ (XX) for males. Numerous long terminal repeat (LTR) and non-LTR retrotransposons, retroposons and DNA transposons have accumulated as strata on the W chromosome. However, there are nucleotide sequences that do not show the characteristics of typical transposable elements on the W chromosome. To analyse these uncharacterized nucleotide sequences on the W chromosome, we used whole-genome shotgun (WGS) data and assembled data that was obtained using male genome DNA. Through these analyses, we found that almost all of these uncharacterized sequences were non-autonomous transposable elements that do not fit into the conventional classification. It is notable that some of these transposable elements contained the Bombyx short interspersed element (Bm1) sequences in the elements. We designated them as secondary-Bm1 transposable elements (SBTEs). Because putative ancestral SBTE nucleotide sequences without Bm1 do not occur in theWGS data, we suggest that the Bm1 sequences of SBTEs are not carried on each element merely as a package but are components of each element. Therefore, we confirmed that SBTEs should be classified as a new group of transposable elements.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.