• Swati Chaudhary

      Articles written in Journal of Genetics

    • Mapping of the multifoliate pinna (mfp) leaf-blade morphology mutation in grain pea Pisum sativum

      Raghvendra Kumar Mishra Anil Kumar Swati Chaudhary Sushil Kumar

      More Details Abstract Fulltext PDF

      The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.

    • Genetic control of leaf-blade morphogenesis by the INSECATUS gene in Pisum sativum

      Sushil Kumar Swati Chaudhary Vishakha Sharma Renu Kumari Raghvendra Kumar Mishra Arvind Kumar Debjani Roy Choudhury Ruchi Jha Anupama Priyadarshini Arun Kumar

      More Details Abstract Fulltext PDF

      To understand the role of INSECATUS (INS) gene in pea, the leaf blades of wild-type, ins mutant and seven other genotypes, constructed by recombining ins with uni-tac, af, tl and mfp gene mutations, were quantitatively compared. The ins was inherited as a recessive mutant allele and expressed its phenotype in proximal leaflets of full size leaf blades. In ins leaflets, the midvein development was arrested in distal domain and a cleft was formed in lamina above this point. There was change in the identity of ins leaflets such that the intercalary interrupted midvein bore a leaf blade. Such adventitious blades in ins, ins tl and ins tl mfp were like the distal segment of respective main leaf blade. The ins phenotype was not seen in ins af and ins af uni-tac genotypes. There was epistasis of uni-tac over ins. The ins, tl and mfp mutations interacted synergistically to produce highly pronounced ins phenotype in the ins tl mfp triple mutant. The role(s) of INS in leaf-blade organogenesis are: positive regulation of vascular patterning in leaflets, repression of UNI activity in leaflet primordia for ectopic growth and in leaf-blade primordium for indeterminate growth of rachis, delimitation of proximal leaflet domain and together with TL and MFP homeostasis for meristematic activity in leaflet primordia. The variant apically bifid shape of the affected ins leaflets demonstrated that the leaflet shape is dependent on the venation pattern.

    • Interaction between COCHLEATA and UNIFOLIATA genes enables normal flower morphogenesis in the garden pea, Pisum sativum

      Sushil Kumar Vishakha Sharma Swati Chaudhary Renu Kumari Nisha Kumari Poonam Mishra

      More Details Fulltext PDF
    • Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat

      Sushil Kumar Vishakha Sharma Swati Chaudhary Anshika Tyagi Poonam Mishra Anupama Priyadarshini Anupam Singh

      More Details Abstract Fulltext PDF

      Time to flowering in the winter growth habit bread wheat is dependent on vernalization (exposure to cold conditions) and exposure to long days (photoperiod). Dominant Vrn-1 (Vrn-A1, Vrn-B1 and Vrn-D1) alleles are associated with vernalization-independent spring growth habit. The semidominant Ppd-D1a mutation confers photoperiod-insensitivity or rapid flowering in wheat under short day and long day conditions. The objective of this study was to reveal the nature of interaction between Vrn-1 and Ppd-D1a mutations (active alleles of the respective genes vrn-1 and Ppd-D1b). Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also phenotyped for flowering time by seeding in two different seasons. The wheat lines of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1a, Vrn-A1a Vrn-B1 Ppd-D1a and Vrn-A1a Vrn-D1 Ppd-D1a (or Vrn-1 Ppd-D1a) genotypes flowered several weeks earlier than that of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1b, Vrn-A1b Ppd-D1b and Vrn-D1 Ppd-D1b (or Vrn-1 Ppd-D1b) genotypes. The flowering time phenotypes of the isogenic vernalization-insensitive lines confirmed that Ppd-D1a hastened flowering by several weeks. It was concluded that complementary interaction between Vrn-1 and Ppd-D1a active alleles imparted super/very-early flowering habit to spring wheats. The early and late flowering wheat varieties showed differences in flowering time between short day and long day conditions. The flowering time in Vrn-1 Ppd-D1a genotypes was hastened by higher temperatures under long day conditions. The ambient air temperature and photoperiod parameters for flowering in spring wheat were estimated at 25°C and 12 h, respectively.

    • Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus

      Vishakha Sharma Swati Chaudhary Suchi Srivastava Richa Pandey Sushil Kumar

      More Details Abstract Fulltext PDF

      Improved Catharanthus roseus cultivars are required for high yields of vinblastine, vindoline and catharanthine and/or serpentine and ajmalicine, the pharmaceutical terpenoid indole alkaloids. An approach to derive them is to map QTL for terpenoid indole alkaloids yields, identify DNA markers tightly linked to the QTL and apply marker assisted selection. Towards the end, 197 recombinant inbred lines from a cross were grown over two seasons to characterize variability for seven biomass and 23 terpenoid indole alkaloids content-traits and yield-traits. The recombinant inbred lines were genotyped for 178 DNA markers which formed a framework genetic map of eight linkage groups (LG), spanning 1786.5 cM, with 10.0 cM average intermarker distance. Estimates of correlations between traits allowed selection of seven relatively more important traits for terpenoid indole alkaloids yields. QTL analysis was performed on them using single marker (regression) analysis, simple interval mapping and composite interval mapping procedures. A total of 20 QTL were detected on five of eight LG, 10 for five traits on LG1, five for four traits on LG2, three for one trait on LG3 and one each for different traits on LG three and four. QTL for the same or different traits were found clustered on three LG. Co-location of two QTL for biomass traits was in accord of correlation between them. The QTL were validated for use in marker assisted selection by the recombinant inbred line which transgressively expressed 16 traits contributory to the yield vinblastine, vindoline and catharanthine from leaves and roots that possessed favourable alleles of 13 relevant QTL.

    • Genetic interaction and mapping studies on the leaflet development (lld) mutant in Pisum sativum

      Sushil Kumar Raghvendra Kumar Mishra Arvind Kumar Swati Chaudhary Vishakha Sharma Renu Kumari

      More Details Abstract Fulltext PDF

      In Pisum sativum, the completely penetrant leaflet development (lld) mutation is known to sporadically abort pinnae suborgans in the unipinnate compound leaf. Here, the frequency and morphology of abortion was studied in each of the leaf suborgans in 36 genotypes and in presence of auxin and gibberellin, and their antagonists. Various lld genotypes were constructed by multifariously recombining lld with a coch homeotic stipule mutation and with af, ins, mare, mfp, tl and uni-tac leaf morphology mutations. It was observed that the suborgans at all levels of pinna subdivisions underwent lld-led abortion events at different stages of development. As in leafblades, lld aborted the pinnae in leaf-like compound coch stipules. The lld mutation interacted with mfp synergistically and with other leaf mutations additively. The rod-shaped and trumpet-shaped aborted pea leaf suborgans mimicked the phenotype of aborted leaves in HD-ZIP-III-deficient Arabidopsis thaliana mutants. Suborganwise aborted morphologies in lld gnotypes were in agreement with basipetal differentiation of leaflets and acropetal differentiation in tendrils. Altogether, the observations suggested that LLD was the master regulator of pinna development. On the basis of molecular markers found linked to lld, its locus was positioned on the linkage group III of the P. sativum genetic map.

© 2017 Indian Academy of Sciences, Bengaluru.