• Raghvendra Kumar Mishra

      Articles written in Journal of Genetics

    • Mapping of the multifoliate pinna (mfp) leaf-blade morphology mutation in grain pea Pisum sativum

      Raghvendra Kumar Mishra Anil Kumar Swati Chaudhary Sushil Kumar

      More Details Abstract Fulltext PDF

      The multifoliate pinna (mfp) mutation alters the leaf-blade architecture of pea, such that simple tendril pinnae of distal domain are replaced by compound pinna blades of tendrilled leaflets in mfp homozygotes. The MFP locus was mapped with reference to DNA markers using F2 and F2:5 RIL as mapping populations. Among 205 RAPD, 27 ISSR and 35 SSR markers that demonstrated polymorphism between the parents of mapping populations, three RAPD markers were found linked to the MFP locus by bulk segregant analyses on mfp/mfp and MFP/MFP bulks assembled from the F2:5 population. The segregational analysis of mfp and 267 DNA markers on 96 F2 plants allowed placement of 26 DNA markers with reference to MFP on a linkage group. The existence of common markers on reference genetic maps and MFP linkage group developed here showed that MFP is located on linkage group IV of the consensus genetic map of pea.

    • Genetic control of leaf-blade morphogenesis by the INSECATUS gene in Pisum sativum

      Sushil Kumar Swati Chaudhary Vishakha Sharma Renu Kumari Raghvendra Kumar Mishra Arvind Kumar Debjani Roy Choudhury Ruchi Jha Anupama Priyadarshini Arun Kumar

      More Details Abstract Fulltext PDF

      To understand the role of INSECATUS (INS) gene in pea, the leaf blades of wild-type, ins mutant and seven other genotypes, constructed by recombining ins with uni-tac, af, tl and mfp gene mutations, were quantitatively compared. The ins was inherited as a recessive mutant allele and expressed its phenotype in proximal leaflets of full size leaf blades. In ins leaflets, the midvein development was arrested in distal domain and a cleft was formed in lamina above this point. There was change in the identity of ins leaflets such that the intercalary interrupted midvein bore a leaf blade. Such adventitious blades in ins, ins tl and ins tl mfp were like the distal segment of respective main leaf blade. The ins phenotype was not seen in ins af and ins af uni-tac genotypes. There was epistasis of uni-tac over ins. The ins, tl and mfp mutations interacted synergistically to produce highly pronounced ins phenotype in the ins tl mfp triple mutant. The role(s) of INS in leaf-blade organogenesis are: positive regulation of vascular patterning in leaflets, repression of UNI activity in leaflet primordia for ectopic growth and in leaf-blade primordium for indeterminate growth of rachis, delimitation of proximal leaflet domain and together with TL and MFP homeostasis for meristematic activity in leaflet primordia. The variant apically bifid shape of the affected ins leaflets demonstrated that the leaflet shape is dependent on the venation pattern.

    • Genetic interaction and mapping studies on the leaflet development (lld) mutant in Pisum sativum

      Sushil Kumar Raghvendra Kumar Mishra Arvind Kumar Swati Chaudhary Vishakha Sharma Renu Kumari

      More Details Abstract Fulltext PDF

      In Pisum sativum, the completely penetrant leaflet development (lld) mutation is known to sporadically abort pinnae suborgans in the unipinnate compound leaf. Here, the frequency and morphology of abortion was studied in each of the leaf suborgans in 36 genotypes and in presence of auxin and gibberellin, and their antagonists. Various lld genotypes were constructed by multifariously recombining lld with a coch homeotic stipule mutation and with af, ins, mare, mfp, tl and uni-tac leaf morphology mutations. It was observed that the suborgans at all levels of pinna subdivisions underwent lld-led abortion events at different stages of development. As in leafblades, lld aborted the pinnae in leaf-like compound coch stipules. The lld mutation interacted with mfp synergistically and with other leaf mutations additively. The rod-shaped and trumpet-shaped aborted pea leaf suborgans mimicked the phenotype of aborted leaves in HD-ZIP-III-deficient Arabidopsis thaliana mutants. Suborganwise aborted morphologies in lld gnotypes were in agreement with basipetal differentiation of leaflets and acropetal differentiation in tendrils. Altogether, the observations suggested that LLD was the master regulator of pinna development. On the basis of molecular markers found linked to lld, its locus was positioned on the linkage group III of the P. sativum genetic map.

  • Journal of Genetics | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.