RAGHAVENDRA GADAGKAR
Articles written in Journal of Genetics
Volume 64 Issue 1 July 1985 pp 41-58
N. V. Joshi Raghavendra Gadagkar
A model is constructed to study the effects of local mate competition and multiple mating on the optimum allocation of resources between the male and female reproductive brood in social hymenopteran colonies from the ‘points of view’ of the queen (parental manipulation theory) as well as the workers (kin selection theory). Competition between pairs of alleles specifying different sex investment ratios is investigated in a game theoretic frame work. All other things being equal, local mate competition shifts the sex allocation ratio in favour of females both under queen and worker control. While multiple mating has no effect on the queen’s optimum investment ratio, it leads to a relatively male biased investment ratio under worker control. Under queen control a true Evolutionarily Stable Strategy
Volume 65 Issue 3 December 1986 pp 153-158
K. Muralidharan M. S. Shaila Raghavendra Gadagkar
Asymmetries in genetic relatedness created by haplodiploidy have been considered to be crucially important for the evolution of worker behaviour in Hymenoptera. Multiple mating by the queens destroys this asymmetry and should make kin selection less powerful. The number of males that social insect queens mate with is thus of considerable theoretical interest especially in primitively eusocial species. The results presented here provide evidence for multiple mating by foundresses of the primitively eusocial wasp
Volume 69 Issue 2 August 1990 pp 113-125
Origin and evolution of eusociality: a perspective from studying primitively eusocial wasps
Eusocial insects are those that show overlap of generations, cooperative brood care and reproductive caste differentiation. Of these, primitively eusocial insects show no morphological differences between reproductive and worker castes and exhibit considerable flexibility in the social roles that adult females may adopt. This makes them attractive model systems for investigations concerning the origin of eusociality. The rapidly accumulating information on primitively eusocial wasps suggests that haplodiploidy is unlikely to have an important role in the origin of eusociality. General kin selection (without help from haplodiploidy) could however have been an important factor due to the many advantages of group living. Pre-imaginal caste bias leading to variations in fertility is also likely to have some role. Because workers often have some chance of becoming reproductives in future, mutualism and other individual selection models suggest themselves as important factors. A hypothesis for the route to eusociality which focuses on the factors selecting for group living at different stages in social evolution is presented. It is argued that group living originates owing to the benefit of mutualism (the ‘Gambling Stage’) but parental manipulation and subfertility soon become important (the ‘Manipulation Stage’) and finally the highly eusocial state is maintained because genetic asymmetries created by haplodiploidy are exploited by kin recognition (the ‘Recognition Stage’).
Volume 70 Issue 1 April 1991 pp 1-31
The haplodiploid genetic system found in all Hymenopterans creates an asymmetry in genetic relatedness so that full-sisters are more closely related to each other than a mother is to her daughters. Thus Hymenopteran workers who rear siblings can obtain higher inclusive fitness compared to individuals who rear offspring. However, polyandry and polygyny reduce relatedness between workers and their sisters and thus tend to break down the genetic asymmetry created by haplodiploidy. Since the advent of electrophoretic analysis of variability at enzyme loci, several estimates of intra-colony genetic relatedness in the Hymenoptera have been published. To test the role of the genetic asymmetry created by haplodiploidy in the evolution of eusociality, I assume that workers are capable of investing in their brothers and sisters in their ratio of relatedness to them. I then compute a
Volume 76 Issue 3 December 1997 pp 167-179
Caste polymorphism, defined as the presence within a colony of two or more morphologically differentiated individuals of the same sex, is an important character of highly eusocial insects both in the Hymenoptera (ants, bees and wasps) and in the Isoptera (termites), the only two groups in the animal kingdom where highly eusocial species occur. Frequently, caste polymorphism extends beyond mere variations in size (although the extent of variations in size can be in the extreme) and is accompanied by allometric variations in certain body parts. How such polymorphism has evolved and why, in its extreme form, it is essentially restricted to the social insects are questions of obvious interest but without satisfactory answers at the present time. I present a hypothesis entitled ‘genetic release followed by diversifying evolution’, that provides potential answers to these questions. I argue that genetic release followed by diversifying evolution is made possible under a number of circumstances. One of them I propose is when some individuals in a species begin to rely on the indirect component of inclusive fitness while others continue to rely largely on the direct component, as workers and queens in social insects are expected to do. Thus when queens begin to rely on workers for most of the foraging, nest building and brood care, and workers begin to rely increasingly on queens to lay eggs—when queen traits and worker traits do not have to be expressed in the same individual—I postulate the relaxation of stabilizing selection and new spurts of directional selection on both queen-trait genes and worker-trait genes (in contrasting directions) leading to caste polymorphism.
Volume 83 Issue 2 August 2004 pp 109-111 Research Commentary
Genetically engineered monogamy in voles lends credence to the
Volume 84 Issue 1 April 2005 pp 87-89 Obituary
Volume 89 Issue 2 August 2010 pp 173-182 Research Article
Karyotype instability in the ponerine ant genus
Nutan Karnik H. Channaveerappa H. A. Ranganath Raghavendra Gadagkar
The queenless ponerine ant
Volume 96 Issue 3 July 2017 pp 513-516 Viewpoint
The evolution of culture (or the lack thereof): mapping the conceptual space
This short essay is based on a lecture that I gave at short notice on a subject in which I am by no means an expert. The combination of lack of expertise and time for preparation, created an unexpectedly unique opportunity for thinking outside the box. I decided not to try to read up (as there was no time in any case) but instead to organize the little that I already knew about cultural evolution in a systematic schema—I attempted to create a scaffolding, on which I could hang everything I knew about cultural evolution, and hopefully, everything I might ever discover about cultural evolution in the future. I considered three dimensions ofthe study of cultural evolution, namely (i) the phenomenon of cultural evolution, (ii) production of knowledge in the field of cultural evolution, and (iii) the consequences or applications of an understanding of the evolution of culture.
Volume 97 Issue 2 June 2018 pp 429-438 RESEARCH ARTICLE
SAIKAT CHAKRABORTY SHANTANU P. SHUKLA K. P. ARUNKUMAR JAVAREGOWDA NAGARAJU RAGHAVENDRA GADAGKAR
Volume 101, 2022
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.