Articles written in Journal of Genetics

    • Identification of 40k 𝛾-secalin genes

      Peng-Fei Qi Qing Chen Thérèse Ouellet Cheng-Xing Le Jia Ai Yu-Ming Wei Ji-Rui Wang You-Liang Zheng

      More Details Abstract Fulltext PDF
    • The 𝛾-gliadin-like 𝛾-prolamin genes in the tribe Triticeae

      Peng-Fei Qi Cheng-Xing Le Zhao Wang Yu-Bin Liu Qing Chen Zhen-Zhen Wei Bin-Jie Xu Zheng-Yuan Wei Shou-Fen Dai Yu-Ming Wei You-Liang Zheng

      More Details Abstract Fulltext PDF

      The 𝛾-prolamins are important components of seed storage proteins in wheat and other Triticeae species. Here, the 𝛾-prolamin genes from the diploid Triticeae species were systemically characterized. Most of the 𝛾-prolamins (except 75 K 𝛾-secalins) characterized were defined as 𝛾-gliadin-like 𝛾-prolamins, since they shared same characteristic model structure with 𝛾-gliadins. Over one-third of these putatively functional 𝛾-prolamin peptides contained different number of cysteine residues as compared to the eight residues present in 𝛾-gliadins. Sequence polymorphism and linkage disequilibrium analyses showed the conservation of 𝛾-prolamin genes in Triticeae species under evolutionary selection. Phylogenetic analyses indicated that these 𝛾-prolamin genes can not be clearly separated according to their genomic origins, reflecting the conservation of 𝛾-gliadin-like 𝛾-prolamin genes after the divergence of Triticeae species. A screening of coeliac disease (CD) toxic epitopes shows that the 𝛾-prolamins from some other genomes contain much fewer epitopes than those from the A, S (B) and D genomes of wheat. These findings contribute to better understanding of 𝛾-prolamin family in Triticeae and build a ground for breeding less CD-toxic wheat cultivars.

    • Characterization and expression analyses of the H ⁺ -pyrophosphatase gene in rye


      More Details Abstract Fulltext PDF

      The H+-pyrophosphatase (H⁺-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H⁺ -PPase gene ScHP1 in rye (Secale cereale L. ‘Qinling’). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H⁺ − PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns.ScHP1 was highly homologous with other members of the H⁺ -PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress,ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.