Articles written in Journal of Genetics

    • New microsatellite markers classifying nontoxic and toxic Jatropha curcas

      Patcharin Tanya Sujinna Dachapak Maung Maung Tar Peerasak Srinives

      More Details Abstract Fulltext PDF
    • Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.)

      Hamidreza Dargahi Patcharin Tanya Peerasak Srinives

      More Details Abstract Fulltext PDF

      Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.

    • Genetics of resistance to Cercospora leaf spot disease caused by Cercospora canescens and Psuedocercospora cruenta in yardlong bean (Vigna unguiculata ssp. sesquipedalis) × grain cowpea (V. unguiculata ssp. unguiculata) populations


      More Details Abstract Fulltext PDF

      Yardlong bean (Vigna unguiculata ssp. sesquipedalis), a type of cowpea, is an important vegetable legume of Asia. Cercospora leaf spot (CLS) caused by Cercospora canescens and Psuedocercospora cruenta is an important phytopathological problem of the yardlong bean grown in tropical regions. The objectives of this study were to (i) determine mode of inheritance of resistance to CLS caused by C. canescens and P. cruenta, (ii) estimate the heritability of the resistance, (iii) estimate genetic effects on the resistance using six basic populations generated from the cross between the susceptible yardlong bean ‘CSR12906’ and the resistant grain cowpea (V.unguiculata spp. unguiculata) ‘IT90K-59-120’. Segregation for the resistance to both fungi in the F2 population fitted both 3 : 1 ratio and 13 : 3 ratio of susceptible:resistant, while that in the BC2 ((CSR12906×IT90K-59-120)×IT90K- 59-120) population fitted a 1 : 1 ratio, suggesting one recessive gene or two genes with inhibitory gene action control the resistance. Generation mean analysis showed that a simple additive–dominance model was adequate to explain the genetic control of CLS disease resistance, indicating that a single gene controls the resistance. The average number of major genes (effective factors) controlling the resistance was estimated to be 1.05 and 0.92 for C. canescens and P. cruenta, respectively. The broad-sense heritability calculated for resistance to both diseases was higher than 0.90. Altogether, these results indicated that the resistance to CLS disease caused by C. canescens and P. cruenta in grain cowpea IT90K-59-120 is a highly heritable trait governed by a single major recessive gene.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.