• Margarida Matos

      Articles written in Journal of Genetics

    • Quantitative genetics of functional characters inDrosophila melanogaster populations subjected to laboratory selection

      Henrique Teotónio Margarida Matos Michael R. Rose

      More Details Abstract Fulltext PDF

      What are the genetics of phenotypes other than fitness, in outbred populations? To answer this question, the quantitative-genetic basis of divergence was characterized for outbredDrosophila melanogaster populations that had previously undergone selection to enhance characters related to fitness. Line-cross analysis using first-generation and second-generation hybrids from reciprocal crosses was conducted for two types of cross, each replicated fivefold. One type of cross was between representatives of the ancestral population, a set of five populations maintained for several hundred generations on a two-week discrete-generation life cycle and a set of five populations adapted to starvation stress. The other type of cross was between the same set of ancestral-representative populations and another set of five populations selected for accelerated development from egg to egg. Developmental time from egg to eclosion, starvation resistance, dry body weight and fecundity at day 14 from egg were fit to regression models estimating single-locus additive and dominant effects, maternal and paternal effects, and digenic additive and dominance epistatic effects. Additive genetic variation explained most of the differences between populations, with additive maternal and cytoplasmic effects also commonly found. Both within-locus and between-locus dominance effects were inferred in some cases, as well as one instance of additive epistasis. Some of these effects may have been caused by linkage disequilibrium. We conclude with a brief discussion concerning the relationship of the genetics of population differentiation to adaptation.

    • Fast evolutionary genetic differentiation during experimental colonizations

      Josiane Santos Marta Pascual Pedro Simões Inês Fragata Michael R. Rose Margarida Matos

      More Details Abstract Fulltext PDF

      Founder effects during colonization of a novel environment are expected to change the genetic composition of populations, leading to differentiation between the colonizer population and its source population. Another expected outcome is differentiation among populations derived from repeated independent colonizations starting from the same source. We have previously detected significant founder effects affecting rate of laboratory adaptation among Drosophila subobscura laboratory populations derived from the wild. We also showed that during the first generations in the laboratory, considerable genetic differentiation occurs between foundations. The present study deepens that analysis, taking into account the natural sampling hierarchy of six foundations, derived from different locations, different years and from two samples in one of the years. We show that striking stochastic effects occur in the first two generations of laboratory culture, effects that produce immediate differentiation between foundations, independent of the source of origin and despite similarity among all founders. This divergence is probably due to powerful genetic sampling effects during the first few generations of culture in the novel laboratory environment, as a result of a significant drop in $N_{\text{e}}$. Changes in demography as well as high variance in reproductive success in the novel environment may contribute to the low values of $N_{\text{e}}$. This study shows that estimates of genetic differentiation between natural populations may be accurate when based on the initial samples collected in the wild, though considerable genetic differentiation may occur in the very first generations of evolution in a new, confined environment. Rapid and significant evolutionary changes can thus occur during the early generations of a founding event, both in the wild and under domestication, effects of interest for both scientific and conservation purposes.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.