• M. Mukesh

      Articles written in Journal of Genetics

    • Microsatellite DNA typing for assessment of genetic variability in Tharparkar breed of Indian zebu (Bos indicus) cattle, a major breed of Rajasthan

      M. Sodhi M. Mukesh B. Prakash S. P. S. Ahlawat R. C. Sobti

      More Details Abstract Fulltext PDF

      The present study estimates genetic variability with a set of 25 microsatellite markers in a random sample of 50 animals of Tharparkar breed of Indian zebu (Bos indicus) cattle. Tharparkar is a dual-purpose breed, valued for its milk as well as draught utility, and is adapted to the inhospitable Thar desert conditions of Rajasthan typified by summer temperature hovering above 50°C, sparse rainfall and vegetation, and scarcity of even drinking water. The observed number of alleles ranged from 4 (ETH3, ILSTS030, INRA5, INRA63 and MM8) to 11 (HEL9 and ILSTS034), with allelic diversity (average number of observed alleles per locus) of 6.20. Observed and expected heterozygosity ranged from 0.25 (INRA63) to 0.77 (ETH10), and from 0.51 (HEL5 and HAUT27) to 0.88 (HEL9) respectively. Wide range of genetic variability supported the utility of these microsatellite loci in measurement of genetic diversity indices in other Indian cattle breeds too. Various average genetic variability measures, namely allele diversity (6.20), observed heterozygosity (0.57), expected heterozygosity (0.67) and mean polymorphism information content (0.60) values showed substantial within-breed genetic variability in this major breed of Rajasthan, despite accumulated inbreeding as reflected by high average inbreeding coefficient (F1S = 0.39). The Tharparkar population has not experienced a bottleneck in the recent past.

    • Identification of novel polymorphism in buffalo stanniocalcin-1 gene and its expression analysis in mammary gland under different stages of lactation


      More Details Abstract Fulltext PDF

      Stanniocalcin-1 (STC1) is secreted by the variety of tissues having a major role in the regulation of calcium ions in the involuting mammary gland. The present work aims to sequence and structural characterization as well as expression profiling of STC1 gene in buffalo. Polymorphism identified in the 3-untranslated region (UTR) was analysed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) genotyping in riverine and swamp buffaloes. Expression profiling of STC1 was performed in different lactation stages of mammary gland and peripheral blood mononuclear cells to study the impact of 3'-UTR polymorphism on its expression. Different polymorphic sites were detected in the entire coding and noncoding regions of riverine and swamp buffaloes, including two INDELs. An identified polymorphic nucleotide locus A324G, having target sites for two miRNAs, namely bta-miR-2382 and bta-miR-1343, reported in cattle, was genotyped by PCR-RFLP to reveal variable allelic distribution among swamp and riverine buffaloes. Gene expression profiling across buffalo mammary tissues representing different lactation stages showed maximum expression of the STC1 gene in the involuting mammary gland. Ruminants’ specific genetic variation has been observed in STC1 and its implication in buffalo mammary gland involution as well as coregulation of gene expression throughmiRNA binding in the 3'-UTR is suggested.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.