• Jean-Claude Moreteau

      Articles written in Journal of Genetics

    • Light body pigmentation in indianDrosophila melanogaster: A likely adaptation to a hot and arid climate

      Patricia Gibert Brigitte Moreteau Jean-Claude Moreteau Ravi Parkash Jean R. David

      More Details Abstract Fulltext PDF

      We analysed reaction norms of pigmentation (thorax and abdomen) according to growth temperature for 20 isofemale lines collected near Delhi (India) and compared them to results obtained for two French populations. The climatic conditions of the two locations were strongly different, with monthly average temperature ranging between 4.2°C and 20.5°C in France and between 14.3°C and 34.3°C in India. For each segment, a decrease of the pigmentation was observed with increasing temperature and the shapes of the reaction norms were more or less parallel. On average Indian flies were lighter than French ones, in agreement with the thermal budget hypothesis. We further investigated the shapes of reaction norms by polynomial adjustment and observed significant differences. In several cases, a maximum divergence was observed at high temperature, implying a change in the shape of the norm. Characteristic values related to the thermal reactivity were also significantly different between populations but no general tendency was found. Genetic variability, estimated by the coefficient of intraclass correlation, was significantly lower in India (0.27 ±0.026) than in France (0.39 ±0.028), and we discuss the significance of this difference.

    • Thermal phenotypic plasticity of body size in Drosophila melanogaster: sexual dimorphism and genetic correlations

      Jean R. David Amir Yassin Jean-Claude Moreteau Helene Legout Brigitte Moreteau

      More Details Abstract Fulltext PDF

      Thirty isofemale lines collected in three different years from the same wild French population were grown at seven different temperatures (12–31°C). Two linear measures, wing and thorax length, were taken on 10 females and 10 males of each line at each temperature, also enabling the calculation of the wing/thorax (W/T) ratio, a shape index related to wing loading. Genetic correlations were calculated using family means. The W–T correlation was independent of temperature and on average, 0.75. For each line, characteristic values of the temperature reaction norm were calculated, i.e. maximum value, temperature of maximum value and curvature. Significant negative correlations were found between curvature and maximum value or temperature of maximum value. Sexual dimorphism was analysed by considering either the correlation between sexes or the female/male ratio. Female–male correlation was on average 0.75 at the within line, within temperature level but increased up to 0.90 when all temperatures were averaged for each line. The female/male ratio was genetically variable among lines but without any temperature effect. For the female/male ratio, heritability (intraclass correlation) was about 0.20 and evolvability (genetic coefficient of variation) close to 1. Although significant, these values are much less than for the traits themselves. Phenotypic plasticity of sexual dimorphism revealed very similar reaction norms for wing and thorax length, i.e. a monotonically increasing sigmoid curve from about 1.11 up to 1.17. This shows that the males are more sensitive to a thermal increase than females. In contrast, the W/T ratio was almost identical in both sexes, with only a very slight temperature effect.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.