Articles written in Journal of Genetics

    • Quantitative trait loci that determine plasma insulin levels in F2 intercross populations produced from crosses between DDD/Sgn and C57BL/6J inbred mice


      More Details Abstract Fulltext PDF

      When compared to C57BL/6J (B6) mice, DDD/Sgn (DDD) mice has substantially higher plasma insulin levels in both sexes. In this study, we performed quantitative trait loci (QTL) mapping of plasma insulin levels in F2 male mice produced by crosses between DDD and B6 mice. By single-QTL scans, we identified one significant QTL on chromosome 9. When body weight was included as an additive covariate, we identified two significant QTL on chromosomes 9 and 12; the latter coincided with a QTL that was previously identified in F2 female mice produced by the same two strains. The inheritance mode and the direction of the allelic effect of QTL on chromosome 12 were similar in both sexes, but those on chromosome 9 differed between males and females, suggesting that the QTL on chromosome 9 was sex-specific. Based on phenotypic correlations of plasma insulin levels with body weight and plasma levels of total cholesterol, triglyceride and testosterone, we subsequently assessed whether these insulin QTL explain the variation in other metabolic traits by using a point-wise significance threshold of P = 0.05. QTL on chromosome 12 had no significant effect on any trait. In contrast, QTL on chromosome 9 had significant effects on body weight and total cholesterol level. We postulate that Gpr68 and Cyp19a1 are plausible candidate genes for QTL on chromosomes 12 and 9, respectively. These findings provide insight into the genetic mechanisms underlying insulin metabolism.

    • Genetic analysis of the mandible morphology in DDD.Cg-Ay/Sgn and C57BL/6J inbred mice


      More Details Abstract Fulltext PDF

      Quantitative trait loci (QTL) mapping analysis was performed for the mandible morphology in DDD.Cg-Ay/Sgn and C57BL/6J inbred mice. The size and shape of the mandible was analysed by landmark-based geometric morphometrics as the centroid size and principal components (PCs), respectively. The Ay allele at the agouti locus significantly reduced the mandible size in DDD/Sgn background, and substantially altered the mandible shape in both strain backgrounds. Single-QTL scans, by including the agouti locus genotype (Ay or non-Ay) as an additive covariate, identified three significant QTL for the centroid size on chromosomes 5, 6 and 17, along with four suggestive QTL on chromosomes 2, 12, 18 and 19. These QTLs explained 46.85% of the centroid size variation in F2 mice. When the F2Ay and F2 non-Ay mice were analysed separately, additional significant QTL were identified on chromosomes 12 and 15 in F2 non-Ay mice. Single-QTL scans also identified 15 significant QTL for the PC1, PC2 and PC3. When the agouti locus genotype was included as an interactive covariate, nine significant QTLs were identified. Unexpectedly, these agouti-interacting QTLs were identified for relatively minor PCs, for which no significant single-QTL were identified. Therefore, it was suggested that the alteration of the mandible shape in Ay mice was the consequence of interactions between the Ay allele and genes that themselves have relatively small phenotypic effect. Although further in vivo studies are required, we postulated Pkd1 as a possible candidate gene underlying QTL for the centroid size on chromosome 17.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.