• J. G. Wu

      Articles written in Journal of Genetics

    • Genetic and genotype × environment interaction effects for the content of seven essential amino acids inIndica rice

      J. G. Wu C. H. Shi X. M. Zhang T. Katsura

      More Details Abstract Fulltext PDF

      It is necessary for rice breeders to understand the genetic basis of nutrient quality traits of rice. Essential amino acids are most important in determining the nutrient quality of rice grain and can affect the health of people who depend on rice as a staple food. In view of the paucity of genetic information available on essential amino acids inindica rice, we estimated the genetic main effects and genotype × environment (G × E) interaction effects on the content of essential amino acids. Nine cytoplasmic male sterile lines as females and five restorer lines as males were introduced in a North Carolina II design across environments. Estimates of the content of the essential amino acids valine, methionine, leucine and phenylalanine showed that they were mainly controlled by genetic main effects, while the contents of threonine, cysteine and isoleucine were mainly affected by G × E effects. In the case of genetic main effects, both cytoplasmic and maternal genetic effects were predominant for all essential amino acids, indicating that selection for improving essential amino acid content based on maternal performance would be more effective than that based on seeds. The total narrow-sense heritabilities were high and ranged from 0.72 to 0.83. Since general heritabilities for these essential amino acids (except for cysteine) were found to be much larger than G × E interaction heritability, the improvement of content of most essential amino acids under selection would be expected under various environments. Rice varieties such as Zhenan 3, Yinchao 1, T49, 26715, 102 and 1391 should be selected as optimal parents for increasing the content of most essential amino acids, while the total genetic effects from Zhexie 2, Xieqingzao, Gangchao 1, V20, Zuo 5 and Zhenshan 97 were mainly negative and these parents could decrease the contents of most essential amino acids.

    • Analysis of embryo, cytoplasmic and maternal correlations for quality traits of rapeseed (Brassica napus L.) across environments

      C. H. Shi H. Z. Zhang J. G. Wu

      More Details Fulltext PDF
  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.