Fa Cui
Articles written in Journal of Genetics
Volume 90 Issue 3 December 2011 pp 409-425 Research Article
Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level?
Fa Cui Anming Ding Jun Li Chunhua Zhao Xingfeng Li Deshun Feng Xiuqin Wang Lin Wang Jurong Gao Honggang Wang
Kernel dimensions (KD) contribute greatly to thousand-kernel weight (TKW) in wheat. In the present study, quantitative trait loci (QTL) for TKW, kernel length (KL), kernel width (KW) and kernel diameter ratio (KDR) were detected by both conditional and unconditional QTL mapping methods. Two related F8:9 recombinant inbred line (RIL) populations, comprising 485 and 229 lines, respectively, were used in this study, and the trait phenotypes were evaluated in four environments. Unconditional QTL mapping analysis detected 77 additive QTL for four traits in two populations. Of these, 24 QTL were verified in at least three trials, and five of them were major QTL, thus being of great value for marker assisted selection in breeding programmes. Conditional QTL mapping analysis, compared with unconditional QTL mapping analysis, resulted in reduction in the number of QTL for TKW due to the elimination of TKW variations caused by its conditional traits; based on which we first dissected genetic control system involved in the synthetic process between TKW and KD at an individual QTL level. Results indicated that, at the QTL level, KW had the strongest influence on TKW, followed by KL, and KDR had the lowest level contribution to TKW. In addition, the present study proved that it is not all-inclusive to determine genetic relationships of a pairwise QTL for two related/causal traits based on whether they were co-located. Thus, conditional QTL mapping method should be used to evaluate possible genetic relationships of two related/causal traits.
Volume 91 Issue 3 December 2012 pp 303-312 Research Article
Conditional QTL mapping of protein content in wheat with respect to grain yield and its components
Lin Wang Fa Cui Jinping Wang Li Jun Anming Ding Chunhua Zhao Xingfeng Li Deshun Feng Jurong Gao Honggang Wang
Grain protein content in wheat (
Volume 92 Issue 2 August 2013 pp 213-231 Research Article
Hong Zhang Fa Cui Lin Wang Jun Li Anming Ding Chunhua Zhao Yinguang Bao Qiuping Yang Honggang Wang
For discovering the quantitative trait loci (QTLs) contributing to early seedling growth and drought tolerance during germination, conditional and unconditional analyses of 12 traits of wheat seedlings: coleoptile length, seedling height, longest root length, root number, seedling fresh weight, stem and leaves fresh weight, root fresh weight, seedling dry weight, stem and leaves dry weight, root dry weight, root to shoot fresh weight ratio, root-to-shoot dry weight ratio, were conducted under two water conditions using two F8:9 recombinant inbred line (RIL) populations. The results of unconditional analysis are as follows: 88 QTLs accounting for 3.33–77.01% of the phenotypic variations were detected on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 4A, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B and 7D. Among these QTLs, 19 were main-effect QTLs with a contribution rate greater than 10%. The results of the conditional QTL analysis of 12 traits under osmotic stress on normal water conditions were as follows: altogether 22 QTLs concerned with drought tolerance were detected on chromosomes 1B, 2A, 2B, 3B, 4A, 5D, 6A, 6D, 7B, and 7D. Of these QTLs, six were main-effect QTLs. These 22 QTLs were all special loci directly concerned with drought tolerance and most of them could not be detected by unconditional analysis. The finding of these QTLs has an important significance for fine-mapping technique, map-based cloning, and molecular marker-assisted selection of early seedling traits, such as growth and drought tolerance
Volume 98 All articles Published: 10 July 2019 Article ID 0069 RESEARCH ARTICLE
CHUNHUA ZHAO HAN SUN CHUNHUI GUAN JUNPENG CUI QIANQIAN ZHANG MENGMENG LIU xLIU MENGNA ZHANG QIFAN GUO YUZHU HOU MINGJIE XIANG XIAOMIN JIANG XIULONG LUO DEJUN HAN YONGZHEN WU FA CUI
Genetic information of polymerase chain reaction (PCR)-based markers, one of the main tools of genetics and genomics research in wheat, have been well documented in wheat. However, the physical position in relation to these markers has not yet been systematically characterized. Aim of this study was to characterize the physical information of thousands of widely usedmolecular markers.We first assigned 2705 molecular markers to wheat physical map, of which 86.1% and 84.7% were the best hits to chromosome survey sequencing (CSS) project (CSS-contigs) and International Wheat Genome Sequencing Consortium Reference Sequence v1.0 (IWGSC RefSeq v1.0), respectively. Physical position of 96.2% markers were predicated based on BLAST analysis, were in accordance with that of the previous nullisomic/aneuploidy/linkage analysis. A suggestive high-density physical map with 4643 loci was constructed, spanning 14.01 Gb (82.4%) of the wheat genome, with 3.02Mb between adjacent markers. Both forward and reverse primer sequences of 1166 markers had consistent best hits to IWGSC RefSeq v1.0 based on BLAST analysis, and the corresponding allele sizes were characterized. A detailed physical map with 1532 loci was released, spanning 13.93 Gb (81.9%) of the wheat genome, with 9.09Mb between adjacent markers. Characteristic of recombination rates in different chromosomal regions was discussed. In addition, markers with multiple sites were aligned to homoeologous sites with a consistent order, confirming that a collinearity existed among A, B and D subgenomes. This study facilitates the integration of physical and genetical information of molecular markers, which could be of value for use in genetics and genomics research such as gene/QTL map-based cloning and marker-assisted selection.
Volume 102, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.