• Chun Hai Shi

      Articles written in Journal of Genetics

    • Detecting relationships between amylose content and amino acid contents of indica rice with conditional approach

      Chun Hai Shi Qiong Qiong Zhu Ke Ming Wang Guo Ke Ge Jian Guo Wu Zhen Ghao Xu

      More Details Abstract Fulltext PDF

      The relationship between the genetic effects of endosperm, cytoplasm and maternal plant on amylose content (AC) and amino acid contents of indica rice was studied using unconditional and conditional analysis methods. The results indicated that the protein content (PC) and brown rice weight (WBR) could significantly affect the relationships between AC and amino acid contents of rice. The phenotypic and genotypic covariances between AC and amino acid contents were most significantly negative under the interference of PC or WBR, but most of the relationships for the paired traits were not significant after excluding the influence of PC or WBR on AC. For the conditional genetic relationship analysis of different genetic systems including endosperm, cytoplasm and maternal plant, visible changes were found in many genetic correlation components between AC and amino acid content after eliminating the influences of PC, especially, for the endosperm or maternal additive effects, endosperm additive or dominance interaction effects and maternal additive interaction effects. The relationships of the paired traits conditioned on WBR were mainly controlled by the endosperm dominance or additive interaction effects.

    • Analysis of embryo, cytoplasmic and maternal genetic correlations for seven essential amino acids in rapeseed meal (Brassica napus L.)

      Guo Lin Chen Jian Guo Wu Murali-Tottekkaad Variath Zhong Wei Yang Chun Hai Shi

      More Details Abstract Fulltext PDF

      Genetic correlations of nutrient quality traits including lysine, methionine, leucine, isoleucine, phenylalanine, valine and threonine contents in rapeseed meal were analysed by the genetic model for quantitative traits of diploid plants using a diallel design with nine parents of Brassica napus L. These results indicated that the genetic correlations of embryo, cytoplasm and/or maternal plant havemade different contribution to total genetic correlations of most pairwise nutrient quality traits. The genetic correlations among the amino acids in rapeseed meal were simultaneously controlled by genetic main correlations and genotype × environment (GE) interaction correlations, especially for the maternal dominance correlations. Most components of genetic main correlations and GE interaction correlations for the pairwise traits studied were significantly positive. Some of the pairwise traits had negative genetic correlations, especially between valine and other amino acid contents. Indirect selection for improving the quality traits of rapeseed meal could be expected in rape breeding according to the magnitude and direction of genetic correlation components.

    • Timing of gene expression from different genetic systems in shaping leucine and isoleucine contents of rapeseed (Brassica napus L.) meal

      Guo Lin Chen Jian Guo Wu Murali-Tottekkaad Variath Chun Hai Shi

      More Details Abstract Fulltext PDF

      Experiments were conducted on rapeseed (Brassica napus L.) using a diallel design with nine parents: Youcai 601, Double 20-4, Huashuang 3, Gaoyou 605, Zhongyou 821, Eyouchangjia, Zhong R-888, Tower and Zheshuang 72. The seed developmental process was divided into five stages, namely initial (days 1–15 after flowering), early (days 16–22 after flowering), middle (days 23–29), late (days 30–36), and maturing (days 37–43) developmental stages. The variation of dynamic genetic effects for leucine and isoleucine contents of rapeseed meal was analysed at five developmental stages, across different environments using the genetic models with time-dependent measures. The results from unconditional and conditional analyses indicated that the expression of diploid embryo, cytoplasmic and diploid maternal plant genes were important for leucine and isoleucine contents at different developmental stages of rapeseed, particularly at the initial and early developmental stages. Among different genetic systems, nutrition quality traits were mainly controlled by the accumulative or net maternal main effects and their GE interaction effects, except at maturity when the net diploid embryo effects were larger. The expression of genes was affected by the environmental conditions on 15, 22, 29 or 36 days after flowering, but was more stable at mature stage. For the isoleucine content the narrow-sense heritabilities on 15, 22, 29, 36, and 43 days after flowering were 43.0, 65.7, 60.1, 65.5 and 78.2%, respectively, while for the leucine content the corresponding narrow-sense heritabilities were relatively smaller. The interaction heritabilities were more important than the general heritabilities at the first three developmental times. The improvement for isoleucine content could be achieved by selection based on the higher narrow-sense heritabilities. Various genetic systems exhibited genetic correlations among the developmental times or leucine and isoleucine contents. A simultaneous improvement of leucine and isoleucine contents seems possible because of the significant positive genetic correlation components from different genetic systems at different developmental times.

    • Mapping of quantitative trait loci for oil content in cottonseed kernel

      Quampah Alfred Hai Ying Liu Hai Ming Xu Jin Rong Li Jian Guo Wu Shui Jin Zhu Chun Hai Shi

      More Details Abstract Fulltext PDF

      Oil content in cottonseed is a major quality trait which when improved through breeding could enhance the competitiveness of cottonseed oil among other vegetable oils. Cottonseed oil content is a quantitative trait controlled by genes in the tetraploid embryo and tetraploid maternal plant genomes, and the knowledge of quantitative trait loci (QTLs) and the genetic effects related to oil content in both genomes could facilitate the improvement in its quality and quantity. However, till date, QTL mapping and genetic analysis related to this trait in cotton have only been conducted in the tetraploid embryo genome. In the current experiment, an IF2 population of cottonseed kernels from the random crossing of 188 intraspecific recombinant inbred lines which were derived from the hybrid of two parents, HS46 and MARCABUCAG8US-1-88, were used to simultaneously locate QTLs for oil content in the embryo and maternal plant genomes. The four QTLs found to be associated with oil content in cottonseed were: qOC-18-1 on chromosome 18; qOC-LG-11 on linkage group 11; qOC-18-2 on chromosome 18; and qOC-22 on chromosome 22. At a high selection threshold of 0.05, there was strong evidence linking the QTLs above the oil content in cottonseed. Embryo additive and dominant effects from the tetraploid embryo genome, as well as maternal additive effects from the tetraploid maternal plant genome were found to be significant contributors to genetic variation in cottonseed oil content.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.