• Chitra Kannabiran

      Articles written in Journal of Genetics

    • Screening for homozygosity by descent in families with autosomal recessive retinitis pigmentosa

      Kota Lalitha Subhadra Jalali Tejas Kadakia Chitra Kannabiran

      More Details Abstract Fulltext PDF

      Retinitis pigmentosa (RP) is a genetically heterogeneous disease and an important cause of blindness in the state of Andhra Pradesh in India. In an attempt to identify the disease locus in families with the recessive form of the disease, we used the approach of screening for homozygosity by descent in offspring of consanguineous and nonconsanguineous families with RP. Microsatellite markers closely flanking 21 known candidate genes for RP were genotyped in parents and affected offspring to determine whether there was homozygosity at these loci that was shared by affected individuals of a family. This screening approach may be a rapid preliminary method to test known loci for possible cosegregation with disease.

    • Preface

      Chitra Kannabiran Kunal Ray

      More Details Abstract Fulltext PDF
    • Genetics of corneal endothelial dystrophies

      Chitra Kannabiran

      More Details Abstract Fulltext PDF

      The corneal endothelium maintains the level of hydration in the cornea. Dysfunction of the endothelium results in excess accumulation of water in the corneal stroma, leading to swelling of the stroma and loss of transparency. There are four different corneal endothelial dystrophies that are hereditary, progressive, non-inflammatory disorders involving dysfunction of the corneal endothelium. Each of the endothelial dystrophies is genetically heterogeneous with different modes of transmission and/or different genes involved in each subtype. Genes responsible for disease have been identified for only a subset of corneal endothelial dystrophies. Knowledge of genes involved and their function in the corneal endothelium can aid understanding the pathogenesis of the disorder as well as reveal pathways that are important for normal functioning of the endothelium.

    • A comprehensive, sensitive and economical approach for the detection of mutations in the RB1 gene in retinoblastoma

      Vidya Latha Parsam Chitra Kannabiran Santosh Honavar Geeta K. Vemuganti Mohammad Javed Ali

      More Details Abstract Fulltext PDF

      Retinoblastoma (Rb) is the most common primary intraocular malignancy in children. It is brought about by the mutational inactivation of both alleles of RB1 gene in the developing retina. To identify the RB1 mutations, we analysed 74 retinoblastoma patients by screening the exons and the promoter region of RB1. The strategy used was to detect large deletions/duplications by fluorescent quantitative multiplex PCR; small deletions/insertions by fluorescent genotyping of RB1 alleles, and point mutations by PCR-RFLP and sequencing. Genomic DNA from the peripheral blood leucocytes of 74 Rb patients (53 with bilateral Rb, 21 with unilateral Rb; 4 familial cases) was screened for mutations. Recurrent mutations were identified in five patients with bilateral Rb, large deletions in 11 patients (nine with bilateral Rb and two with unilateral Rb), small deletions/insertions were found in 12 patients all with bilateral Rb, and point mutations in 26 patients (14 nonsense, six splice site, five substitution and one silent change). Three mutations were associated with variable expressivity of the disease in different family members. Using this method, the detection rates achieved in patients with bilateral Rb were 44/53 (83%) and with unilateral Rb, 5/21 (23.8%). This approach may be feasible for clinical genetic testing and counselling of patients.

    • Therapeutic avenues for hereditary forms of retinal blindness

      CHITRA KANNABIRAN INDUMATHI MARIAPPAN

      More Details Abstract Fulltext PDF

      Hereditary retinal diseases, known as retinal degenerations or dystrophies, are a large group of inherited eye disorders resulting in irreversible visual loss and blindness. They develop due to mutations in one or more genes that lead to the death of the retinal photoreceptor cells. Till date, mutations in over 200 genes are known to be associated with all different forms of retinal disorders. The enormous genetic heterogeneity of this group of diseases has posedmany challenges in understanding the mechanisms of disease and in developing suitable therapies. Therapeutic avenues that are being investigated for these disorders include genetherapy to replace the defective gene, treatment with neurotrophic factors to stimulate the growth of photoreceptors, cell replacement therapy, and prosthetic devices that can capture light and transmit electrical signals through retinal neurons to the brain. Several of these are in process of human trials in patients, and have shown safety and efficacy of the treatment. A combination of approaches that involve both gene replacement and cell replacement may be required for optimum benefit.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.