Bashisth N. Singh
Articles written in Journal of Genetics
Volume 84 Issue 3 December 2005 pp 283-293 Research Article
Jay P. Yadav Bashisth N. Singh
We present evidence for coexistence of three different
Volume 94 Issue 2 June 2015 pp 351-361 Review Article
Species and genetic diversity in the genus
Biodiversity is the sum total of all living things on the earth with particular reference to the profound variety in structure, function and genetic constitution. It includes both number and frequency of species or genes in a given assemblage and the variety of resulting ecosystems in a region. It is usually considered at three different levels: genetic, species and ecological diversities. Genus
Volume 94 Issue 3 September 2015 pp 493-495 Research Note
Bashisth N. Singh Parul Banerjee
Volume 95 Issue 4 December 2016 pp 1053-1064 REVIEW ARTICLE
Mayr (1942) defined sibling species as sympatric forms which are morphologically very similar or indistinguishable, but which possess specific biological characteristics and are reproductively isolated. Another term, cryptic species has also been used for such species. However, this concept changed later. Sibling species are as similar as twins. This category does not necessarily include phylogenetic siblings as members of a superspecies. Since the term sibling species was defined by Mayr, a large number of cases of sibling species pairs/groups have been reported and thus they are widespread in the animal kingdom.However, they seem to be more common in some groups such as insects. In insects, they have been reported in diptera, lepidoptera, coleoptera, orthoptera, hymenoptera and others. Sibling species are widespread among the dipteran insects and as such are well studied because some species are important medically (mosquitoes), genetically (Drosophila) and cytologically(Sciara and Chironomus). The well-studied classical pairs of sibling species in Drosophila are: D. pseudoobscura and D. persimilis, and D. melanogaster and D. simulans. Subsequently, a number of sibling species have been added to these pairs and a large number of other sibling species pairs/groups in different species groups of the genus Drosophila have been reported in literature. The present review briefly summarizes the cases of sibling species pairs/groups in the genus Drosophila with their evolutionary significance.
Volume 96 Issue 1 March 2017 pp 97-107 RESEARCH ARTICLE
PARUL BANERJEE BASHISTH N. SINGH
Making interspecific hybridizations, where possible remains an unparalleled option for studying the intricacies of speciation. In the Drosophila bipectinata species complex comprising of four species, namely D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae, interspecific hybrids can be obtained in the laboratory, thus bequeathing an ideal opportunity for studying speciation and phylogeny. With the view of investigating the degree of divergence between each species pair, we planned to study the polytene chromosomes of the F1 hybrids, as it would mirror the level of compatibility between the genomes of the parental species. Two sets of crosses were made, one involving homozygous strains of all four species from India and the other including homozygous strains from different places across the globe. Polytene chromosomes of F1 larvae from both sets of crosses had similar configurations. In F1 larvae from crosses involving D. bipectinata, D. parabipectinata and D. malerkotliana, complex configurations (depicting overlapping inversions) could be detected in different arms. However, they were fairly synapsed, indicating that the differences are only at the level of gene arrangements. The polytene chromosomes of larvae obtained by crossing D. pseudoananassae with the other three species were very thin with gross asynapsis in all the arms, demonstrating that the genome of D. pseudoananassae is widely diverged from rest of the species. The overlapping inversions (reflected in complex configuration), are inferred in the light of earlier chromosomal studies performed in this complex.
Volume 97 Issue 4 September 2018 pp 1039-1046 REVIEW ARTICLE
Dobzhansky’s concept of genetic coadaptation:
Dobzhansky was the first to show that the inversion polymorphism in
Volume 99 All articles Published: 24 January 2020 Article ID 0012 REVIEW ARTICLE
Mutation and recombination are primarily responsible for generating the genetic variability in natural populations of microorganisms, plant and animal species including humans. Upon such genetic variations, elemental forces of evolution such as natural selection, random genetic drift and migration operate to bring about micro-evolutionary changes. Recombination or crossing-over produces new combinations of genes due to interchange of corresponding segments between nonsister chromatids of homologous chromosomes, thus, it is an important evolutionary factor. Since the time of T. H. Morgan,
Volume 102, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.