Articles written in Journal of Genetics

    • Mapping QTL controlling agronomic traits in a doubled haploid population of winter oilseed rape (Brassica napus L.)


      More Details Abstract Fulltext PDF

      Identification of superior alleles for agronomic traits in genetic resources of oilseed rape (Brassica napus L.) would be useful for improving the performance of locally adapted cultivars in Iran. The objective of the present work was to analysethe genetic variation and inheritance of important agronomic traits in a doubled haploid population derived from a cross between two German oilseed rape cultivars, Sansibar and Oase. Field experiments were performed in 2016–2017 with 200 doubled haploid lines and the parental genotypes applying an alpha-lattice design with two replicates. Phenological traits were recorded duringthe cultivation period and at maturity, seed yield, yield components and seed quality traits were determined. Significant genetic variation was found in most of the traits and heritabilities ranged from medium (48.5%) for days to end of flowering to high (92.6%) for oil content. A molecular marker linkage map was used to map 36 QTL for different traits on 17 linkage groups. Betweenthree and four QTL were identified for each seed yield, seed weight, oil and protein content. Some of the plant material and positive QTL alleles identified for agronomic traits may be useful for improving those characters in locally adapted cultivars in Iran.

    • Evolutionary dynamics models in biometrical genetics supports QTL × environment interactions


      More Details Abstract Fulltext PDF

      The process of development of quantitative trait locus (QTL) involves interactions between many factors, both environmental and genetic, in which many genes interact often in no additive pathways together and with environment. Integration of the mathematical, statistical and biological aspects of these subjects has made important and interesting results. In this review, mathematical methods offered to study the QTL × environment interactions. The topic is circumscribed, going from basic selection equations to models of evolution of QTLs. Discrete and continuous time mathematical models and subsequently, QTL modelling were introduced with and without environmental interactions. The mathematical models derived here showed that the gradients of mean fitness which have revealed in studies by many researchers had a basic role in mathematical genetics, evolutionary aspects of biometrical genetics and QTL analysis. QTL × environment interactions were studied mathematically including fitness components too. It was revealed that QTL × environment interactions in fitness could generate a balancing selection. Also, QTL analysis could be used to calculate the geometry of the phenotype landscape. In this paper, models applied in biometrical genetics corresponds to QTL analysis and matched with results from other researchers. The originality of this synthesis is the evolutionary modelling of QTL × environment interactions which can be used to investigate the extinction or stability of a population. Also to emphasize that although some scientific subjects like Brownian motion, quantum mechanics, general relativity, differential geometry, and evolutionarybiometrical genetics were apparently different subjects, but the mathematical models were the backbone of these branches of science. This implies that such matters in nature have probably common and elegant basis. The perspective of the subject of this paper in future will be a new and interesting branch of interdisciplinary science.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.