Ashutosh
Articles written in Journal of Genetics
Volume 86 Issue 2 August 2007 pp 93-101 Research Article
Aruna Pathania Rajesh Kumar V. Dinesh Kumar Ashutosh K. K. Dwivedi P. B. Kirti P. Prakash V. L. Chopra S. R. Bhat
A cytoplasmic male sterile (CMS) line of
Volume 92 Issue 3 December 2013 pp 545-557 Research Article
Sheel Yadav Ashutosh Singh M. R. Singh Nitika Goel K. K. Vinod T. Mohapatra A. K. Singh
Assessment of genetic diversity in a crop germplasm is a vital part of plant breeding. DNA markers such as microsatellite or simple sequence repeat markers have been widely used to estimate the genetic diversity in rice. The present study was carried out to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic variability, and to assess the efficiency of random vis-à-vis QTL linked/gene based simple sequence repeat markers in diversity estimation. A set of 88 rice accessions that included landraces, farmer’s varieties and popular Basmati lines were evaluated for agronomic traits and molecular diversity. The random set of SSR markers included 50 diversity panel markers developed under IRRI’s Generation Challenge Programme (GCP) and the trait-linked/gene based markers comprised of 50 SSR markers reportedly linked to yield and related components. For agronomic traits, significant variability was observed, ranging between the maximum for grains/panicle and the minimum for panicle length. The molecular diversity based grouping indicated that varieties from a common centre were genetically similar, with few exceptions. The trait-linked markers gave an average genetic dissimilarity of 0.45 as against that of 0.37 by random markers, along with an average polymorphic information constant value of 0.48 and 0.41 respectively. The correlation between the kinship matrix generated by trait-linked markers and the phenotype based distance matrix (0.29) was higher than that of random markers (0.19). This establishes the robustness of trait-linked markers over random markers in estimating genetic diversity of rice germplasm.
Volume 99 All articles Published: 22 April 2020 Article ID 0035 RESEARCH ARTICLE
PREETI SIROHI YADAV BIRENDRA S. SHADMA AFZAL ASHUTOSH MANI NAND K. SINGH
Meta-analysis provides a systematic access to the previously studied microarray datasets that can recognize several commonsignatures of stresses. Three different datasets of abiotic stresses on rice were used for meta-analysis. These microarray datasets were normalized to regulate data for technical variation, as opposed to biological differences between the samples. A t-test was performed to recognize the differentially-expressed genes (DEGs) between stressed and normal samples. Gene ontology enrichment analysis revealed the functional distribution of DEGs in different stressed conditions. Further analysis was carried out using software RICE NET DB and divided into three different categories: biological process (homoiothermy and protein amino acid phosphorylation), cellular component (nucleus and membrane), and molecular function (zinc ion binding ad DNA binding). The study revealed that 5686 genes were constantly expressed differentially in
Volume 100 All articles Published: 27 May 2021 Article ID 0034 RESEARCH ARTICLE
Evaluation of disease resistant and high yielding faba bean germplasm in India
NEHA TIWARI TAPAN KUMAR DEEP RATNA SAXENA NIGAMANANDA SWAIN FOUAD MAALOUF SEID AHMED ASHUTOSH SARKER
Faba bean (
Volume 100 All articles Published: 21 July 2021 Article ID 0053 RESEARCH ARTICLE
SHAYLA BINDRA INDERJIT SINGH B. S. GILL SATVIR K. GREWAL JASPREET KAUR LOVEPREET KAUR SONIA SALARIA AJINDER KAUR ASHUTOSH KUSHWAH S. SRINIVASAN SARVJEET SINGH
A unique trait, i.e. yellowing of apical/young leaves in response to low temperature and high relative humidity was identified in a chickpea genotype, ICCX110069. To determine inheritance pattern of this trait, ICCX110069 was crossed to four other genotypes, GL14050, GL14049, GL14059 and SAGL152117, that exhibited normal green apical leaves under similar environmental conditions. The F1, F2, F3, BC1F1 and BC1F2 generations were generated. A ratio of 13 normal green leaf: three yellow leaf was found to be the best fit, indicated digenic gene action with suppressor effect of normal green leaf over the expression of yellowing of apical/young leaf trait. The chlorophyll content was significantly lower, while guaiacol peroxidase activity was significantly higher in yellow leaves of ICCX110069 as compared to green leaves of the same genotype and of GL14049, indicating the competence of antioxidative defence mechanism involvedwith the expression of this trait.
Volume 100 All articles Published: 24 May 2021 Article ID 0033 RESEARCH ARTICLE
TAPAN KUMAR ALADDIN HAMWIEH NIGAMANANDA SWAIN ASHUTOSH SARKER
Chickpea (Cicer arietinum L.) is an important food legume crop grown in arid and semi-arid regions of the world. In India, kabuli chickpea is grown in central India in ~0.5 million ha, predominantly under short winter (< 110 days). Efforts are underway to select promising genotypes at the Food Legume Research Platform (FLRP), Amlaha, located in intensive kabuli chickpea growing area of India.Sixty-four kabuli chickpea lines were evaluated for agronomic traits during 2017–2018 and 2018–2019 crop seasons at FLRP following simple 8 X 8 lattice design with two replications. The analysis of variance over two years revealed significant variation exists for days to flowering, plant height, maturity period, biomass, seed size and seed yield. It was observed that with similar maturity time (106 days), FLIP09-432C produced 2273 kg/ha, which out-yielded the popular variety in central India, JGK-3 by 15%. The breeding lines, FLIP09- 436C, FLIP09-171C, FLIP09-373C and FLIP09-247C were also found promising for earliness (104–110 days), and high yielding with the good yield ability (1003–2273 kg/ha). These promising genotypes for a short duration with good yield have been selected and can be used for various chickpea breeding programmes to develop high yielding varieties in central India.
Volume 101 All articles Published: 26 July 2022 Article ID 0033 RESEARCH ARTICLE
ASHUTOSH SINGH R. L. RAVIKUMAR SURESH H. ANTRE P. H. KUCHANUR H. C. LOHITHASWA
The reproductive stage in many crops, including maize, is very sensitive to heat stress and the genetic overlap between gametophytic and sporophytic phase gives an opportunity to select superior stress tolerant genotype at gametophytic stage. An attempt was made to evaluate the response of cyclic pollen selection in the F1 and F2 generations on the performance of F3 generation progenies for seed yield and yield contributing traits under natural heat stress conditions. In this direction three groups of F3 progenies, namely (i) pollen selection in F1 and F2 generations (GG), (ii) pollen selection only in F2 generation (CG), (iii) no pollen selection in F1 and F2 generations (CC) were screened for heat stress at Agricultural Research Station (ARS), Bheemarayanagudi. The GG progenies recorded significantly higher chlorophyll content, more number of pollen grains per anther and less pollen sterility compared to CG and CC group of progeniesunder heat stress. Further, the F4 progenies obtained through cyclic pollen selection (in F1, F2 and F3) were also tested for heat stress tolerance at seedling stage. The significant improvement for heat stress tolerance was recorded in F4 progenies derived through cyclic pollen selection as compared to control (no pollen selection for heat tolerance in any generation) F4 progenies. The results indicated that cyclic pollen selection in F1, F2 and F3 generations improved the heat stress tolerance of the progenies in the succeeding generations. To provide genetic evidence for the effect of pollen selection for heat tolerance, the control F2 (C) and selected F2 (G) populations were compared for the segregation of SSR markers. The selected F2 (G) population showed significant deviation from normal Mendelian ratio of 1:2:1 and showed skewness towards the alleles selected from male parent. The results provide strong evidence for an increase in the frequency of parental alleles in the progenies that impart heat stress tolerance.
Volume 102, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.