Articles written in Journal of Genetics

    • Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat

      Amandeep Kaur Riar Satinder Kaur H. S. Dhaliwal Kuldeep Singh Parveen Chhuneja

      More Details Abstract Fulltext PDF

      Rusts are the most important biotic constraints limiting wheat productivity worldwide. Deployment of cultivars with broad spectrum rust resistance is the only environmentally viable option to combat these diseases. Identification and introgression of novel sources of resistance is a continuous process to combat the ever evolving pathogens. The germplasm of nonprogenitor Aegilops species with substantial amount of variability has been exploited to a limited extent. In the present investigation introgression, inheritance and molecular mapping of a leaf rust resistance gene of Ae. caudata (CC) acc. pau3556 in cultivated wheat were undertaken. An F2 population derived from the cross of Triticum aestivum cv.WL711 – Ae. caudata introgression line T291-2 with wheat cultivar PBW343 segregated for a single dominant leaf rust resistance gene at the seedling and adult plant stages. Progeny testing in F3 confirmed the introgression of a single gene for leaf rust resistance. Bulked segregant analysis using polymorphic D-genome-specific SSR markers and the cosegregation of the 5DS anchored markers (Xcfd18, Xcfd78, Xfd81 and Xcfd189) with the rust resistance in the F2 population mapped the leaf rust resistance gene (LrAC) on the short arm of wheat chromosome 5D. Genetic complementation and the linked molecular markers revealed that LrAC is a novel homoeoallele of an orthologue Lr57 already introgressed from the 5M chromosome of Ae. geniculata on 5DS of wheat.

    • Maternal MTHFR polymorphism (677 C–T) and risk of Down’s syndrome child: meta-analysis


      More Details Abstract Fulltext PDF

      Methylenetetrahydrofolate reductase (MTHFR) is the most important gene that participates in folate metabolism. Presence of valine instead of alanine at position 677 and elevated levels of homocystein causes DNA hypomethylation which in turnfavours nondisjunction. In this study, we conducted a meta-analysis to establish link between maternal single-nucleotide polymorphism (SNP) and birth of Down’s syndrome (DS) child. A total of 37 case–control studies were selected for analysis including our own, in which we investigated 110 cases and 111 control mothers. Overall, the result of meta-analysis showed significant risk of DS affected by the presence of maternal SNP (MTHFR 677 C–T OR= 0.816, 95% CI= 0.741–0.900, P< 0.0001). Heterogeneity of high magnitude was observed among the studies. The chi-square value suggested a highly significant association between homozygous mutant TT genotype and birth of DS child (χ ²=23.63, P= 0.000). Genetic models suggested that ‘T’ allele possesses high risk for DS whether present in dominant (OR = 1.23, 95% CI = 1.13–1.34); codominant (OR = 1.17, 95% CI = 1.10–1.25) or recessive (OR = 1.21, 95% CI = 1.05–1.38) form. The analysis from all 37 studies combined together suggested that MTHFR 677 C–T is a major risk factor for DS birth.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.