• ADAMOS HADJIPANAYIS

      Articles written in Journal of Genetics

    • Evidence of digenic inheritance in autoinflammation-associated genes

      VASSOS NEOCLEOUS STEFANIA BYROU MEROPI TOUMBA CONSTANTINA COSTI CHRISTOS SHAMMAS CHRISTINA KYRIAKOU VIOLETTA CHRISTOPHIDOU-ANASTASIADOU GEORGE A. TANTELES ADAMOS HADJIPANAYIS LEONIDAS A. PHYLACTOU

      More Details Abstract Fulltext PDF

      Familial Mediterranean fever (FMF) has traditionally been considered as a monogenic autosomal recessive disorder caused by mutations in the MEFV gene with highest incidence among Mediterranean populations. In a considerable number of patients with typical FMF, only one MEFV mutation was identified and the possibility that more than one autoinflammatory gene may be responsible for their disease was investigated. In the present study, an extensive search for possiblemutations in three hereditary recurrent fever (HRF) genes was performed in 128 MEFV heterozygous Greek–Cypriots clinically diagnosed based on their phenotype with FMF-like disease from a previous study. Sequence analysis was performedfor MVK, TNFRSF1A and NLRP3 genes which is also known to cause HRFs. In total, three patients were identified with heterozygous mutations and a second mutation in an autoinflammatory gene. Two patients carried a MEFVmutation and a NLRP3 mutation, and an additional third carried a MEFV mutation and a TNFRSF1A mutation. Patient 1 carried MEFV p.[Val726Ala] (NM_000243.2:c.2177T>C) and NLRP3 p.[Val198Met] (NM_001243133.1:c.592G>A) variants and patient 2 carried MEFV p.[Glu148Gln] (NM_000243.2:c.442G>C) variant which is of uncertain significance and NLRP3 p.[Arg176Trp] (NM_001243133.1:c.526C>T). Lastly, patient 3 was identified to carry MEFV p.[Met694Val] (NM_000243.2:c.2080A>G) and TNFRSF1A p.[Arg121Gln] (NM_001065.3:c.362G>A) variants. The results from this study indicate that screening of genes known to cause HRFs in patients already identified with a single MEFV mutation, can reveal quite rare but potentially causative mutational combinations at different loci. Such interaction provide further evidence for possible locus–locus interactions and phenotypes resulting from digenic inheritance.

    • A novel heterozygous duplication of the SLC12A3 gene in two Gitelman syndrome pedigrees: indicating a founder effect

      PAVLOS FANIS ELISAVET EFSTATHIOU VASSOS NEOCLEOUS LEONIDAS A. PHYLACTOU ADAMOS HADJIPANAYIS

      More Details Abstract Fulltext PDF

      Gitelman syndrome is an autosomal recessive salt-wasting tubulopathy caused by mutations in the SLC12A3 gene. A female and a male sibling from two unrelated Greek-Cypriot families presenting with a severe salt-wasting tubulopathy dueto compound heterozygous mutations of a novel duplication and a previously reported missense mutation in the SLC12A gene are described. Sanger sequencing was used to identify possible mutations in the SLC12A3 gene. For the detection of duplications/conversions and deletions in the same gene, Multiplex ligation probe amplification (MLPA) analysis was performed. Direct sequencing and MLPA analysis of the SLC12A3 gene identified two compound heterozygous mutations in both unrelated probands. Both probands were identified to carry in compound heterozygosity the known p.Met581Lys and a novelheterozygous duplication of exons 9-14 (E9_E14dup). The diagnosis of Gitelman syndrome was made through clinical assessment, biochemical screening and genetic analysis. The identification of the novel SLC12A3 duplication seems to be characteristic of Greek-Cypriot patients and suggests a possible ancestral mutational event that has spread in Cyprus due to a possible founder effect. Testing for Gitelman syndrome probable variants can be performed before proceeding to a full gene sequencing dropping the diagnostic cost. In addition, this report adds to the mutational spectrum observed.

  • Journal of Genetics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.