• Zhixin Huang

      Articles written in Journal of Earth System Science

    • Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China: Constrains from rare earth element, fluid inclusion geochemistry and geochronology

      Zhixin Huang Wanming Yuan Changming Wang Xiangwei Liu Xiaotong Xu Liya Yang

      More Details Abstract Fulltext PDF

      The Jiapigou gold belt is located on the northern margin of the North China Craton, and is one of the most important gold-mining and production regions in the circum-Pacific metallogenic zone. Research has been conducted in this area since the 1960s, however, the timing of the gold mineralisation is still unresolved, and an ideal metallogenic model has not been well established. To address these questions, a systematic geological, geochemical and geochronological investigation was conducted. The study revealed that (i) the gold-bearing quartz veins can be divided into two groups, earlier and later gold-bearing quartz veins according to their occurrence and the geochemical characteristics, (ii) the geochemical characteristics of the ore bodies, while similar to granite, are clearly different from the altered rock, and (iii) the geochemical characteristics of the later gold-bearing quartz veins have more similarity to the altered rock than the earlier gold-bearing quartz veins do. Therefore, we conclude that two independent stages of metallogenesis within the Jiapigou gold deposit area are related to magmatic activity in the Palaeoproterozoic and the Yanshanian stage of the Mesozoic, that the ore-forming fluids are mainly of magmatic origin, and that magma contamination by the altered rock was stronger in the Mesozoic. Zircon LA–ICP–MS U–Pb data show that the age of the Palaeoproterozoic granite is ∼2426.0 Ma and that of the Mesozoic granite is ∼166.2 Ma; these ages can be interpreted as the maximum ages of the two periods of gold mineralisation. In addition to investigating the geotectonic and regional structure of the Jiapigou gold belt, this study also proposes that the WNW-trending zone of gold mineralization is a result of a magmatic event within the basement in the early Palaeoproterozoic, and that largescale sinistral strike-slip displacements of the Huifahe and Liangjiang Faults in the late Middle Triassic (Yanshanian epoch) controlled the later tectono-magmatic event and the NNE–ENE-trending zone of gold mineralisation.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.