• Yunjun Yao

      Articles written in Journal of Earth System Science

    • Satellite evidence for no change in terrestrial latent heat flux in the Three-River Headwaters region of China over the past three decades

      Yunjun Yao Shaohua Zhao Huawei Wan Yuhu Zhang Bo Jiang Kun Jia Meng Liu Jinhui Wu

      More Details Abstract Fulltext PDF

      Terrestrial latent heat flux (LE) in the Three-River Headwaters region (TRHR) of China plays an essential role in quantifying the amount of water evaporation and carbon sink over the high altitude Tibetan Plateau (TP). Global warming is expected to accelerate terrestrial hydrological cycle and to increase evaporation. However, direct field observations are lacking in this region and the long-term variability in LE remains uncertain. In this study, we have revised a semi-empirical Penman LE algorithm based on ground eddy covariance (EC) observations from an alpine grass site and provided new satellite-based evidence to assess LE change in the TRHR during 1982–2010. Our results show that the average annual terrestrial LE in the TRHR is about 38.8 W/m$^2$ and there is no statistically significant changein annual LE from 1982 to 2010. We also found that during the same time period, terrestrial LE over the east region of the TRHR significantly decreased, on average, by 0.7 W/m$^2$ per decade, which was driven primarily by the surface incident solar radiation (Rs) limitation, offsetting the increased LE over the west region of the TRHR caused by the increased precipitation (P) and soil moisture (SM).

    • Spatial and decadal variations in satellite-based terrestrial evapotranspiration and drought over Inner Mongolia Autonomous Region of China during 1982–2009

      Zhaolu Zhang Hui Kang Yunjun Yao Ayad M Fadhil Yuhu Zhang Kun Jia

      More Details Abstract Fulltext PDF

      Evapotranspiration (ET) plays an important role in exchange of water budget and carbon cycles over the Inner Mongolia autonomous region of China (IMARC). However, the spatial and decadal variations in terrestrial ET and drought over the IMARC in the past was calculated by only using sparse meteorological point-based data which remain quite uncertain. In this study, by combining satellite and meteorology datasets, a satellite-based semi-empirical Penman ET (SEMI-PM) algorithm is used to estimate regional ET and evaporative wet index (EWI) calculated by the ratio of ET and potential ET (PET) over the IMARC. Validation result shows that the square of the correlation coefficients (R2) for the four sites varies from 0.45 to 0.84 and the root-mean-square error (RMSE) is 0.78 mm. We found that the ET has decreased on an average of 4.8 mm per decade (p=0.10) over the entire IMARC during 1982–2009 and the EWI has decreased on an average of 1.1% per decade (p=0.08) during the study period. Importantly, the patterns of monthly EWI anomalies have a good spatial and temporal correlation with the Palmer Drought Severity Index (PDSI) anomalies from 1982 to 2009, indicating EWI can be used to monitor regional surface drought with high spatial resolution. In high-latitude ecosystems of northeast region of the IMARC, both air temperature (Ta) and incident solar radiation (Rs) are the most important parameters in determining ET. However, in semiarid and arid areas of the central and southwest regions of the IMARC, both relative humidity (RH) and normalized difference vegetation index (NDVI) are the most important factors controlling annual variation of ET.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.