• Wanming Yuan

      Articles written in Journal of Earth System Science

    • Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China: Constrains from rare earth element, fluid inclusion geochemistry and geochronology

      Zhixin Huang Wanming Yuan Changming Wang Xiangwei Liu Xiaotong Xu Liya Yang

      More Details Abstract Fulltext PDF

      The Jiapigou gold belt is located on the northern margin of the North China Craton, and is one of the most important gold-mining and production regions in the circum-Pacific metallogenic zone. Research has been conducted in this area since the 1960s, however, the timing of the gold mineralisation is still unresolved, and an ideal metallogenic model has not been well established. To address these questions, a systematic geological, geochemical and geochronological investigation was conducted. The study revealed that (i) the gold-bearing quartz veins can be divided into two groups, earlier and later gold-bearing quartz veins according to their occurrence and the geochemical characteristics, (ii) the geochemical characteristics of the ore bodies, while similar to granite, are clearly different from the altered rock, and (iii) the geochemical characteristics of the later gold-bearing quartz veins have more similarity to the altered rock than the earlier gold-bearing quartz veins do. Therefore, we conclude that two independent stages of metallogenesis within the Jiapigou gold deposit area are related to magmatic activity in the Palaeoproterozoic and the Yanshanian stage of the Mesozoic, that the ore-forming fluids are mainly of magmatic origin, and that magma contamination by the altered rock was stronger in the Mesozoic. Zircon LA–ICP–MS U–Pb data show that the age of the Palaeoproterozoic granite is ∼2426.0 Ma and that of the Mesozoic granite is ∼166.2 Ma; these ages can be interpreted as the maximum ages of the two periods of gold mineralisation. In addition to investigating the geotectonic and regional structure of the Jiapigou gold belt, this study also proposes that the WNW-trending zone of gold mineralization is a result of a magmatic event within the basement in the early Palaeoproterozoic, and that largescale sinistral strike-slip displacements of the Huifahe and Liangjiang Faults in the late Middle Triassic (Yanshanian epoch) controlled the later tectono-magmatic event and the NNE–ENE-trending zone of gold mineralisation.

    • Evolution process of the Late Silurian–Late Devonian tectonic environment in Qimantagh in the western portion of east Kunlun, China: Evidence from the geochronology and geochemistry of granitoids

      Nana Hao Wanming Yuan Aikui Zhang Yunlei Feng Jianhui Cao Xiaoning Chen Xueqin Cheng Xuanxue Mo

      More Details Abstract Fulltext PDF

      The East Kunlun Orogenic Belt has undergone a composite orogenic process consisting of multiple orogenic cycles and involving many types of magmatic rocks spread over the whole district. However, due to bad natural geographical conditions and complex superimposed orogenic processes, most of the Caledonian orogenic traces were modified by the late tectonic uplift and denudation, so these rocks are poorly studied. Multiperiodic magmatic activity during the Late Silurian (approximately 420 Ma)–Late Devonian (approximately 380 Ma) exists in the Qimantagh area. We obtained 5 zircon U–Pb ages from the Late Silurian–Late Devonian granitoids in the Qimantagh area. Those ages are 420.6 ± 2.6 Ma(Nalingguole biotite monzogranite), 421.2 ± 1.9 Ma (Wulanwuzhuer potassium granite), 403.7 ± 2.9 Ma (Yemaquan granodiorite), 391.3 ± 3.2 Ma (Qunli granite porphyry), and 380.52 ± 0.92 Ma (Kayakedengtage granodiorite). These granitoids belong to the sub-alkaline, high-K calc-alkaline, metaluminous or weakly or strongly peraluminous series. The rocks are right oblique types, having overall relative LREE enrichment and HREE depletion, though rocks from different times may exhibit different degrees of Eu anomalies or overall moderate Eu depletion. The rocks are rich in large ion lithophile elements (LILE), such as Rb, Th, and K, and high field strength elements (HFSE), such as Zr and Hf, and are depleted in Ba, Nb, Ta, Sr, P, Eu, and Ti. The rocks have complex composition sources. The Late Silurian granitoids are mainly crust-derived. Most of the Devonian granitoids are crust-mantle mixed-source and only some parts of them are crust-derived, especially the Middle Devonian granitoids. Those mid-acidic and acidic intrusive rocks are formed in a post-collision tectonic setting, lithosphere delamination may have occurred in the Early Devonian (407 Ma), and the study area subsequently experienced an underplating of the mantle-derived magma at least until the Late Devonian (380 Ma).

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.