• W Teixeira

      Articles written in Journal of Earth System Science

    • Grenvillian thermal event and remnant charnockite: Isotopic evidence from the Chilka Lake granulite-migmatite suite in the Eastern Ghats belt, India

      S Bhattacharya M P Deomurari W Teixeira

      More Details Abstract Fulltext PDF

      Spectacular exposures of granulite-migmatite occur in the Chilka Lake area of the Eastern Ghats belt. The garnetiferous granite gneiss of peraluminous granitic composition, often contains restitic metapelite inclusions and is demonstrably a product of biotite-dehydration melting in pelitic rocks. On the other hand, older layers and bands of charnockitic rocks frequently occur as dismembered patches within the peraluminous granite, thus imparting a measled appearance of the granite exposures.

      The partial melting and emplacement of the peraluminous granite represent the Grenvillian thermal event, as evidenced by Rb-Sr whole rock and Pb-Pb zircon dating. On the other hand, minor patches of charnockite represent migmatized relict, as evidenced by some older zircons, in addition to those of Grenvillian age.

    • Mafic dykes at the southwestern margin of Eastern Ghats belt: Evidence of rifting and collision

      S Bhattacharya A K Chaudhary W Teixeira

      More Details Abstract Fulltext PDF

      The southwestern margin of the Eastern Ghats Belt characteristically exposes ma fic dykes intruding massif-type charnockites. Dykes of olivine basalt of alkaline composition have characteristic trace element signatures comparable with Ocean Island Basalt (OIB). Most importantly strong positive Nb anomaly and low values of Zr/Nb ratio are consistent with OIB source of the mafic dykes. K –Ar isotopic data indicate two cooling ages at 740 and 530 Ma. The Pan-African thermal event could be related to reactivation of major shear zones and represented by leuco-granite vein along minor shear bands. And 740 Ma cooling age may indicate the low grade metamorphic imprints, noted in some of the dykes. Although no intrusion age could be determined from the present dataset, it could be constrained by some age data of the host charnockite gneiss and Alkaline rocks of the adjacent Prakasam Province. Assuming an intrusion age of ∼1 .3 Ga, Sr –Nd isotopic composition of the dykes indicate that they preserved time-integrated LREE enrichment. In view of the chemical signatures of OIB source, the ma fic dykes could as well be related to continental rifting, around 1.3 Ga, which may have been initiated by intra-plate volcanism.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.