Vijayakumar S Nair
Articles written in Journal of Earth System Science
Volume 117 Issue S1 July 2008 pp 263-271
S Suresh Babu S K Satheesh K Krishna Moorthy C B S Dutt Vijayakumar S Nair Denny P Alappattu P K Kunhikrishnan
During the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) over India, high-resolution airborne measurements of the altitude profiles of the mass concentrations (MB) of aerosol black carbon (BC) were made off Bhubaneswar (BBR, 85.82°E, 20.25°N), over northwest Bay of Bengal, in the altitude region upto 3 km. Such high-resolution measurements of altitude profiles of aerosols are done for the first time over India. The profiles showed a near-steady vertical distribution of MB modulated with two small peaks, one at 800m and the other at ∼2000m. High resolution GPS (Global Positioning System) sonde (Vaisala) measurements around the same region onboard the research vessel
Volume 117 Issue S1 July 2008 pp 303-313
Characteristics of spectral aerosol optical depths over India during ICARB
S Naseema Beegum K Krishna Moorthy Vijayakumar S Nair S Suresh Babu S K Satheesh V Vinoj R Ramakrishna Reddy K Rama Gopal K V S Badarinath K Niranjan Santosh Kumar Pandey M Behera A Jeyaram P K Bhuyan M M Gogoi Sacchidanand Singh P Pant U C Dumka Yogesh Kant J C Kuniyal Darshan Singh
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived ˚Angström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The ˚Angström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from the adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the ˚Angström exponent (𝛼) remained significantly lower (∼1) over the Arabian Sea compared to Bay of Bengal (BoB) (∼1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of 𝛼, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in 𝛼 over the BoB.
Volume 117 Issue S1 July 2008 pp 315-323
Size segregated aerosol mass concentration measurements over the Arabian Sea during ICARB
Vijayakumar S Nair K Krishna Moorthy S Suresh Babu K Narasimhulu L Siva Sankara Reddy R Ramakrishna Reddy K Rama Gopal V Sreekanth B L Madhavan K Niranjan
Mass concentration and mass size distribution of total (composite) aerosols near the surface are essential inputs needed in developing aerosol models for radiative forcing estimation as well as to infer the environment and air quality. Using extensive measurements onboard the oceanographic research vessel,
Volume 117 Issue S1 July 2008 pp 353-360
Influence of circulation parameters on the AOD variations over the Bay of Bengal during ICARB
Marina Aloysius Mannil Mohan S Suresh Babu Vijayakumar S Nair K Parameswaran K Krishna Moorthy
MODIS (Moderate Resolution Imaging Spectroradiometer) level-3 aerosol data, NCEP (National Centers for Environmental Prediction) reanalysis winds and QuikSCAT ocean surface winds were made use of to examine the role of atmospheric circulation in governing aerosol variations over the Bay of Bengal (BoB) during the first phase of the ICARB (Integrated Campaign for Aerosols, gases and Radiation Budget) campaign (March 18–April 12, 2006). An inter-comparison between MODIS level-3 aerosol optical depth (AOD) data and ship-borne MICROTOPS measurements showed good agreement with correlation 0.92 (𝑝 > 0.0001) and a mean MODIS underestimation by 0.01. During the study period, the AOD over BoB showed high values in the northern/north western regions, which reduced towards the central and southern BoB. The wind patterns in lower atmospheric layers (< 850 hPa) indicated that direct transport of aerosols from central India was inhibited by the presence of a high pressure and a divergence over BoB in the lower altitudes. On the other hand, in the upper atmospheric levels, winds from central and northern India stretched south eastwards and converged over BoB with a negative vorticity indicative of a downdraft. These wind patterns pointed to the possibility of aerosol transport from central India to BoB by upper level winds. This mechanism was further confirmed by the significant correlations that AOD variations over BoB showed with aerosol flux convergence and flux vorticity at upper atmospheric levels (600–500 hPa). AOD in central and southern BoB away from continental influences displayed an exponential dependence on the QuikSCAT measured ocean surface wind speed. This study shows that particles transported from central and northern India by upper atmospheric circulations as well as the marine aerosols generated by ocean surface winds contributed to the AOD over the BoB during the first phase of ICARB.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.