• V Krishna Kumar

      Articles written in Journal of Earth System Science

    • Monthly-mean wind stress along the coast of the north Indian Ocean

      Satish R Shetye S Satheesh Chandra Shenoi M K Antony V Krishna Kumar

      More Details Abstract Fulltext PDF

      Monthly-mean wind stress and its longshore and offshore components have been computed using the bulk aerodynamic method for each of a string of 36 two-degree-latitude by two-degree-longitude squares along the coast of the north Indian Ocean. The data source for the computation is the sixty-year mean resultant winds of Hastenrath and Lamb. The main features exhibited by the components, taking the longshore components as positive (negative) when the Ekman transport is away from (towards) the coast, are: (1) Along the coasts of Somalia and Arabia, the magnitude of the wind stress is among the highest in the north Indian Ocean, and its direction is generally parallel to the coastline. This results in a longshore component which is large (as high as 2·5 dyne/cm2) and positive during the southwest monsoon, and weaker (less than 0·6 dyne/cm2) and negative during the northeast monsoon. (2) Though weak (less than 0·2 dyne/cm2) during the northeast monsoon, the monthly-mean longshore component along the west coast of India remains positive throughout the year. The magnitude of the offshore component during the southwest monsoon is much larger than that of the longshore component. (3) The behaviour of the wind stress components along the east coast of India is similar to that along the Somalia-Arabia coast, but the magnitudes are much smaller.

    • Wave-induced nearshore circulation along the Calangute-Candolim beach, Goa, west coast of India

      V Krishna Kumar C S Murty A K Heblekar

      More Details Abstract Fulltext PDF

      The wave-induced nearshore circulation model suggested by Noda has been modified and applied for three small segments along the coast of Goa. The present model incorporates the prevailing bottom topography and considers its variation along with the radiation stress as the driving force for the circulation. We find that the flow pattern is strongly dependent on bottom topography. While normal incidence of waves results in a cellular pattern of flow, meandering flows prevail for oblique incidence along the coast. The shoreward flows are always located over shoals while the rip currents prevail over channels. The onshore/offshore flows show magnitudes as high as 3·1 m/s, while those alongshore reach a maximum of 1·1 m/s. When compared with field observations these values are slightly higher.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.