• V Sreekanth

      Articles written in Journal of Earth System Science

    • Size segregated aerosol mass concentration measurements over the Arabian Sea during ICARB

      Vijayakumar S Nair K Krishna Moorthy S Suresh Babu K Narasimhulu L Siva Sankara Reddy R Ramakrishna Reddy K Rama Gopal V Sreekanth B L Madhavan K Niranjan

      More Details Abstract Fulltext PDF

      Mass concentration and mass size distribution of total (composite) aerosols near the surface are essential inputs needed in developing aerosol models for radiative forcing estimation as well as to infer the environment and air quality. Using extensive measurements onboard the oceanographic research vessel, Sagar Kanya, during its cruise SK223B in the second phase of the ocean segment of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), the spatial distribution of the mass concentration and mass size distribution of near-surface aerosols are examined for the first time over the entire Arabian Sea, going as far as 58°E and 22°N, within a span of 26 days. In general, the mass concentrations $(M_T)$ were found to be low with the mean value for the entire Arabian Sea being 16.7 ± 7 𝜇 g m−3; almost 1/2 of the values reported in some of the earlier campaigns. Coarse mode aerosols contributed, on an average, 58% to the total mass, even though at a few pockets accumulation mode contribution dominated. Spatially, significant variations were observed over central and northern Arabian Sea as well as close to the west coast of India. In central Arabian Sea, even though the $M_T$ was quite low, contribution of accumulation aerosols to the total mass concentration was greater than 50%. Effective radius, a parameter important in determining scattering properties of aerosol size distribution, varied between 0.07 and 0.4 𝜇 m with a mean value of 0.2 𝜇 m. Number size distributions, deduced from the mass size distributions, were approximated to inverse power-law form and the size indices (𝜐) were estimated. It was found to vary in the range 3.9 to 4.2 with a mean value of 4.0 for the entire oceanic region. Extinction coefficients, estimated using the number-size distributions, were well-correlated with the accumulation mode mass concentration with a correlation coefficient of 0.82.

    • Temporal characteristics of aerosol physical properties at Visakhapatnam on the east coast of India during ICARB – Signatures of transport onto Bay of Bengal

      K Niranjan V Sreekanth B L Madhavan T Anjana Devi B Spandana

      More Details Abstract Fulltext PDF

      Realizing the importance of aerosol physical properties at the adjoining continental and coastal locations in the airmass pathways onto the oceanic region, extensive measurements of aerosol physical properties were made at Visakhapatnam (17.7°N, 83.3°E), an eastern coastal location in peninsular India during the ICARB period. The temporal variations of aerosol optical depth, near surface aerosol mass size distributions and BC mass concentrations show significantly higher aerosol optical depth and near surface mass concentrations during the first and last weeks of April 2007. The mean BC mass fraction in the fine mode aerosol was around 11%. The aerosol back scatter profiles derived from Micro Pulse Lidar indicate a clear airmass subsidence on the days with higher aerosol optical depths and near surface mass fraction. A comparison of the temporal variation of the aerosol properties at Visakhapatnam with the MODIS derived aerosol optical depth along the cruise locations indicates a resemblance in the temporal variation suggesting that the aerosol transport from the eastern coastal regions of peninsular India could significantly affect the aerosol optical properties at the near coastal oceanic regions and that the affect significantly reduced at the farther regions.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.