V Ramesh Babu
Articles written in Journal of Earth System Science
Volume 95 Issue 3 November 1986 pp 417-426
Estimation of evaporation rates over the Arabian Sea from satellite data
M Venkateswara Rao V Ramesh Babu L V Gangadhara Rao J S Sastry
Utilizing both the SAMIR brightness temperatures of Bhaskara II and GOSSTCOMP charts of NOAA satellite series, the evaporation rates over the Arabian Sea for June 1982 are estimated through the bulk aerodynamic method. The spatial distribution of evaporation rates estimated from the satellite data sets coincides well with those obtained from ship observations as well as from climatological data. The accuracy in the estimation of evaporation rates has considerably been improved after the removal of bias in sea surface temperature and is about ±0·8 mm/day.
Volume 96 Issue 1 March 1987 pp 69-79
Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam
B Prabhakara Rao V Ramesh Babu P Chandramohan
Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam has been examined in relation to the flow field and surface winds utilizing the hourly data of temperature and currents taken at a fixed location over a tidal cycle at monthly intervals. The coastal currents in the pre-monsoon period and strong near-surface winter cooling processes affect the thermal structure of the coastal sea. Upwelling which is predominant during March to May with an intermittent relaxing event helps in the development of a strong layered thermal structure while convective mixing due to winter inversions during November to February causes weak thermal gradients in the water column.
Volume 98 Issue 2 July 1989 pp 213-222
Latent and sensible heat fluxes under active and weak phases of the summer monsoon of 1986
P N Vinayachandran Y Sadhuram V Ramesh Babu
An analysis of the meteorological data collected by the research vessel ORV Sagarkanya for the mean latent and sensible heat fluxes over the Arabian Sea has indicated appreciable changes between active and weak phases of the southwest monsoon of 1986. We suggest that: (a) the presence of a core of low level winds associated with the Somali jet and its southward shift during the season, along with (b) a ridge in surface pressure over the central Arabian Sea could be responsible for the deficit in monsoon rainfall along the west coast of India in 1986.
Volume 100 Issue 1 March 1991 pp 55-68
Premonsoonal water characteristics and circulation in the east central Arabian Sea
V Ramesh Babu J S Sastry V V Gopalakrishna D V Rama Raju
The hydrographic structure in the east central Arabian Sea during premonsoon period undergoes significant temporal change in the thermal field of upper 100 m, wherein temperature rises by about 0–5°C on an average from May to June. The major contribution in increasing the surface layer temperature comes from surface heat exchange processes, while the horizontal advective process tends to remove the heat from the upper layer. The geostrophic flow patterns are similar from May to June in the major part of the study area while in the coastal areas off Goa a southerly current sets in June in response to coastal upwelling.
Volume 109 Issue 2 June 2000 pp 255-265
V Ramesh Babu V S N Murty L V G Rao C V Prabhu V Tilvi
Hydrographic data collected on board ORV Sagar Kanya in the southern Bay of Bengal during the BOBMEX-Pilot programme (October–November 1998) have been used to describe the thermohaline structure and circulation in the upper 200 m water column of the study region. The presence of seasonal Inter-Tropical Convergence Zone (ITCZ) over the study area, typically characterized with enhanced cloudiness and flanked by the respective east/northeast winds on its northern part and west/southwest winds on its southern part, has led to net surface heat loss of about 55 W/m2. The sea surface dynamic topography relative to 500 db shows that the upper layer circulation is characterised by a cyclonic gyre encompassing the study area. The eastward flowing Indian Monsoon Current (IMC) between 5‡N and 7‡N in the south and its northward branching along 87‡E up to 13‡N appear to feed the cyclonic gyre. The Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents confirm the presence of the cyclonic gyre in the southern Bay of Bengal during the withdrawing phase of the southwest monsoon from the northern/central parts of the Bay of Bengal.
Volume 109 Issue 2 June 2000 pp 267-277
V S N Murty V Ramesh Babu L V G Rao Charuta V Prabhu V Tilvi
Time-series data on upper-ocean temperature, Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents and surface meteorological parameters have been obtained for the first time in the southern Bay of Bengal at 7‡N, 10‡N, and 13‡N locations along 87‡E during October–November, 1998 under BOBMEX-Pilot programme. These data have been analysed to examine the diurnal variability of upper oceanic heat budget and to estimate the eddy diffusivity coefficient of heat in the upper layer. Diurnal variation of near-surface temperature is typical at northern location (13‡N) with a range of 0.5‡C while the diurnal range of temperature is enhanced to 0.8‡C at the central location (10‡N) due to intense solar radiation (1050 W/m2), clear skies and low wind speeds. At the southern location (7‡N), the diurnal variation of temperature is atypical with the minimum temperature occurring at 2000 hrs instead of at early morning hours. In general, the diurnal curve of temperature penetrated up to 15 to 20 m with decreasing diurnal range with depth. The VM-ADCP measured horizontal currents in the upper ocean were predominantly easterly/northeasterly at southern location, north/northerly at central location and northwesterly at northern location, thus describing a large-scale cyclonic gyre with the northward meridional flow along 87‡E. The magnitudes of heat loss at the surface due to air-sea heat exchanges and in the upper 50 m layer due to vertical diffusion of heat are highest at the southern location where intense convective activity followed by overcast skies and synoptic disturbance prevailed in the lower atmosphere. This and the estimated higher value (0.0235 m2/s) of eddy diffusivity coefficient of heat in the upper ocean (0–50 m depth) suggest that 1-D processes controlled the upper layer heat budget at the southern location. On the other hand, during the fair weather conditions, at the central and northern locations, the upper layer gained heat energy, while the sea surface lost (gained) heat energy at northern (central) location. This and lower values of eddy diffusivity coefficient of heat (0.0045 and 0.0150 m2/s) and the northward intensification of horizontal currents at these locations suggest the greater role of horizontal heat advection over the 1-D processes in the upper ocean heat budget at these two locations.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.