V Ananda Rao
Articles written in Journal of Earth System Science
Volume 121 Issue 6 December 2012 pp 1455-1468
Exploring deep potential aquifer in water scarce crystalline rocks
Subash Chandra E Nagaiah D V Reddy V Ananda Rao Shakeel Ahmed
Characterization of the shear zone with pole–pole electrical resistivity tomography (ERT) was carried out to explore deep groundwater potential zone in a water scarce granitic area. As existing field conditions does not always allow to plant the remote electrodes at sufficiently far of distance, the effect of insufficient distance of remote electrodes on apparent resistivity measurement was studied and shown that the transverse pole–pole array affects less compared to the collinear pole–pole array. Correction factor have been computed for transverse pole–pole array for various positions of the remote electrodes. The above results helped in exploring deep aquifer site, where a 270 m deep well was drilled. Temporal hydro-chemical samples collected during the pumping indicated the hydraulic connectivity between the demarcated groundwater potential fractures. Incorporating all the information derived from different investigations, a subsurface model was synthetically simulated and generated 2D electrical resistivity response for different arrays and compared with the field responses to further validate the geoelectrical response of deep aquifer set-up associated with lineament.
Volume 123 Issue 3 April 2014 pp 531-543
Dewashish Kumar V Ananda Rao V S Sarma
Electrical resistivity method is a versatile and economical technique for groundwater prospecting in different geological settings due to wide spectrum of resistivity compared to other geophysical parameters. Exploration and exploitation of groundwater, a vital and precious resource, is a challenging task in hard rock, which exhibits inherent heterogeneity. In the present study, two-dimensional Electrical Resistivity Tomography (2D-ERT) technique using two different arrays, viz., pole–dipole and pole–pole, were deployed to look into high signal strength data in a tectonically disturbed hard rock ridge region for groundwater. Four selected sites were investigated. 2D subsurface resistivity tomography data were collected using
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.