• U V Bhide

      Articles written in Journal of Earth System Science

    • Ocean-atmosphere interaction and synoptic weather conditions in association with the two contrasting phases of monsoon during BOBMEX-1999

      S P Ghanekar V R Mujumdar P Seetaramayya U V Bhide

      More Details Abstract Fulltext PDF

      Surface meteorological parameters acquired during the field phase experiment, BOBMEX-99, for the stationary periods (SP I and II) of the ship ORV Sagar Kanya over Bay of Bengal have been analysed. Active and weak monsoon conditions were observed during the first and the second phase of the experiment respectively over India as well as over the stationary ship location. The phase mean sea surface temperature (SST) is found to be the same in both the phases, however large differences have been observed in the phase mean values of wind speed, mean sea level pressure, latent heat and momentum fluxes at air-sea interface. Synoptic scale monsoon disturbances formed only during the period of strong north-south pressure gradient over the Bay region. Events of prominent fall in SST and in the upper 15 m ocean layer mean temperature and salinity values during typical rainfall events are cited. The impact of monsoon disturbances on ocean-atmosphere interface transfer processes has been investigated.

    • Energetics of lower tropospheric planetary waves over mid latitudes: Precursor for Indian summer monsoon

      S M Bawiskar M D Chipade P V Puranik U V Bhide

      More Details Abstract Fulltext PDF

      Based on NCEP/NCAR reanalysis data, kinetic energy and momentum transport of waves 0 to 10 at 850 hPa level are computed from monthly mean zonal (u) and meridional (v) components of wind from equator to 90‡N. Fourier technique is used to resolve the wind field into a spectrum of waves. Correlation analysis between All India Seasonal Monsoon Rainfall (AISMR) and energetics of the waves indicates that effective kinetic energy of waves 1, 3 and 4 around 37.5‡N in February has significant correlation (99.9%) with the subsequent AISMR. A simple linear regression equation between the effective kinetic energy of these three waves and AISMR is developed. Out of 47 years’ (1958–2004) data, 32 years (1958–1989) are utilized for developing the regression model and the remaining 15 years (1990–2004) are considered for its verification. Predicted AISMR is in close agreement with observed AISMR. The regression equation based on the dynamics of the planetary waves is thus useful for Long Range Forecasting (LRF) of AISMR. Apart from the regression equation, the study provides qualitative predictors. The scatter diagram between AISMR and effective kinetic energy of waves 1, 3 and 4 around 37.5?N indicates that if the kinetic energy is more (less) than 5m2s-2, the subsequent monsoon will be good (weak). Stream function fields indicate that high latitude trough axis along 40‡E (70‡E) leads to a good (weak) monsoon over India.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.