• Somdev Bhattacharji

      Articles written in Journal of Earth System Science

    • Petrology, geochemistry and tectonic settings of the mafic dikes and sills associated with the evolution of the Proterozoic Cuddapah Basin of south India

      Nilanjan Chatterjee Somdev Bhattacharji

      More Details Abstract Fulltext PDF

      In this article we summarize the petrological, geochemical and tectonic processes involved in the evolution of the Proterozoic intracratonic Cuddapah basin. We use new and available ages of Cuddapah igneous rocks, together with field, stratigraphic, geophysical and other criteria, to arrive at a plausible model for the timing of these processes during basin evolution. We present petrological and geochronological evidence of dike emplacement along preferred lineament directions around the basin in response to stresses, which may have been responsible for the evolution of the basin itself. Basaltic dike intrusion started on the south Indian shield around 2400 Ma and continued throughout the Cuddapah basin evolution and sedimentation. A deep mantle perturbation, currently manifested by a lopolithic cupola-like intrusion under the southwestern part of the basin, may have occurred at the onset of basin evolution and played an important role in its development. Paleomagnetic, gravity and geochronological evidence indicates that it was a constant thermal source responsible for dike and sill emplacement between 1500 and 1200 Ma both inside and out-side the basin. Lineament reactivation in the NW-SE and NE-SW directions, in response to the mantle perturbation, intensified between 1400 and 1200 Ma, leading to the emplacement of several cross cutting dikes.

      Fe-Mg partition coefficients of olivine and augite and Ca-Na partition coefficient of plagioclase, calculated from the composition of these minerals and bulk composition of their host rocks, indicate that the dikes outside the Cuddapah basin are cumulates. The contemporary dikes may be related by fractional crystallization as indicated by a positive correlation between their plagioclase Ca# (atomic Ca/[Ca+Na]) and augite Mg# (atomic Mg/[Mg+Fe]). A few NW-SE and NE-SW cross cutting dikes of the period between 1400 and 1200 Ma, preserve petrographic evidence of episodic magmatic intrusive activity along preferred directions. Petrological reasoning indicates that a magmatic liquid reacted with a set of cross cutting dikes, intruding into one that was already solidified and altering the composition of the magma that produced the other dike.

      The Cuddapah basin tholeiites may be related by fractional crystallization at 5 kb and 1019-1154‡ C, which occurred in the lopolithic cupola near the southwestern margin of the basin. Xenolith bearing picrites, which occur near the periphery of the cupola, originated by the accumulation of xenoliths in the tholeiites. This is indicated by the composition of the olivine in the xenoliths (Fo78.7-81.9), which are closely similar to calculated olivine compositions (Fo77.8-78.3) in equilibrium with the tholeiites under the sameP-T conditions. It is inferred that fractionation in the cupola resulted in crystals settling on its walls. Hence, the xenolith-bearing sills occur at the periphery of the lopolithic body.

      The tholeiites both inside and outside the basin are enriched in incompatible elements compared to mid oceanic ridge basalts. The Ba, Rb and K contents of the Cuddapah and other Proterozoic Gondwana tholeiites indicate that a widespread metasomatic enrichment of the mantle source may have occurred between R∼2.9 and R∼2.7Ga. There may be local heterogeneity in the source of the Cuddapah tholeiites as indicated by different Ba/Rb, Ti/Zr, Ti/Y, Zr/Nb and Y/Nb in samples inside and outside the basin. Large-scale differences such as the low P2O5-TiO2 and high P2O5-TiO2 basaltic domains of the Jurassic Gondwana basalts, however, did not exist during the Proterozoic time period under consideration.

      Although we are beginning to understand the tectono-magmatic processes involved in the evolution of the Cuddapah basin, much work remains to be done to obtain a complete picture. Future research in the Cuddapah basin should focus on obtaining accurate ages of the igneous rocks associated with the evolution of the basin.

    • A preliminary geochemical study of zircons and monazites from Deccan felsic dikes, Rajula, Gujarat, India: Implications for crustal melting

      Nilanjan Chatterjee Somdev Bhattacharji

      More Details Abstract Fulltext PDF

      Zircons of 10–100μm size and monazites of up to 10μm size are present in rhyolite and trachyte dikes associated with Deccan basalts around Rajula in the southern Saurashtra Peninsula of Gujarat. On the basis of structural conformity of the felsic and basaltic dikes, K-Ar ages and trace element considerations, a previous study concluded that the felsic rocks are coeval with the Deccan Volcanics and originated by crustal anatexis. The felsic rocks contain two populations of zircons and monazites, one that crystallized from the felsic melt and the other that contains inherited crustal material. Trace element variations in the rhyolites and trachytes indicate that zircons and monazites crystallized from the felsic melts, but compositional analysis of a zircon indicates the presence of a small core possibly inherited from the crust. Hf compositional zoning profile of this zircon indicates that it grew from the host rhyolitic melt while the melt differentiated, and Y and LREE contents suggest that this zircon crystallized from the host melt. Pb contents of some monazites also suggest the presence of inherited crustal cores. Hence, any age determination by the U-Th-Pb isotopic method should be interpreted with due consideration to crustal inheritance. Temperatures estimated from zircon and monazite saturation thermometry indicate that the crust around Rajula may have been heated to a maximum of approximately 900°C by the intruding Deccan magma. Crustal melting models of other workers indicate that a 1–2 million year emplacement time for the Deccan Traps may be appropriate for crustal melting characteristics observed in the Rajula area through the felsic dikes.

    • Two- and three-dimensional gravity modeling along western continental margin and intraplate Narmada-Tapti rifts: Its relevance to Deccan flood basalt volcanism

      Somdev Bhattacharji Rajesh Sharma Nilanjan Chatterjee

      More Details Abstract Fulltext PDF

      The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan flood basalts. Three-dimensional gravity modeling of +70mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, mafic-ultramafic type, elongated, roughly ellipsoidal body. It is approximately 12.0 ±1.2 km thick with its upper surface at an approximate depth of 6.0 ±0.6 km, and its average density is {dy2935} kg/m3. Calculated dimension of the high density body in the upper crust is 300 ±30 km in length and 25 ±2.5 to 40 ±4 km in width. Three-dimensional gravity modeling of +10mgal to -30mgal Bouguer gravity highs along the intraplate Narmada-Tapti rift indicates the presence of eight small isolated high density mafic bodies with an average density of {dy2961} kg/m3. These mafic bodies are convex upward and their top surface is estimated at an average depth of 6.5 ±0.6 (between 6 and 8km). These isolated mafic bodies have an average length of 23.8 ±2.4km and width of 15.9 ±1.5km. Estimated average thickness of these mafic bodies is 12.4±1.2km. The difference in shape, length and width of these high density mafic bodies along the western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of large, ellipsoidal high density mafic bodies along the western continental margin and small, isolated mafic bodies along the Narmada-Tapti rift are related to lineament-reactivation and subsequent rifting due to interaction of hot mantle plume with the lithospheric weaknesses (lineaments) along the path of Indian plate motion over the Réunion hotspot. Mafic bodies formed in the upper lithosphere as magma chambers along the western continental margin and the intraplate Narmada-Tapti rifts at estimated depths between 6 and 8 km from the surface (consistent with geological, petrological and geochemical models) appear to be the major reservoirs for Deccan flood basalt volcanism at approximately 65 Ma.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.