• Shubhra Sharma

      Articles written in Journal of Earth System Science

    • Post-glacial landform evolution in the middle Satluj River valley, India: Implications towards understanding the climate tectonic interactions

      Shubhra Sharma S K Bartarya B S Marh

      More Details Abstract Fulltext PDF

      Late Quaternary landform evolution in monsoon-dominated middle Satluj valley is reconstructed using the fragmentary records of fluvial terraces, alluvial fans, debris flows, paleo-flood deposits, and epigenetic gorges. Based on detailed field mapping, alluvial stratigraphy, sedimentology and optical chronology, two phases of fluvial aggradations are identified. The older aggradation event dated between ∼13 and 11 ka (early-Holocene), occurred in the pre-existing topography carved by multiple events of erosion and incision. Climatically, the event corresponds to the post-glacial strengthened Indian summer monsoon (ISM). The younger aggradation event dated between ∼5 and 0.4 ka (mid- to late-Holocene), was duringthe declining phase of ISM. The terrain witnessed high magnitude floods during transitional climate (∼6.5–7 ka). The fluvial sedimentation was punctuated by short-lived debris flows and alluvial fans during the LGM (weak ISM), early to mid-Holocene transition climate and mid- to late-Holocene decliningISM. Based on the terrace morphology, an event of relatively enhanced surface uplift is inferred after late Holocene. The present study suggests that post-glacial landforms in the middle Satluj valley owe their genesis to the interplay between the climate variability and local/regional tectonic interactions.

    • Geomorphic investigation of the Late-Quaternary landforms in the southern Zanskar Valley, NW Himalaya

      Shubhra Sharma Aadil Hussain Amit K Mishra Aasif Lone Tarun Solanki Mohammad Khatib Khan

      More Details Abstract Fulltext PDF

      The Suru, Doda and Zanskar river valleys in the semi-arid region of Southern Zanskar Ranges (SZR) preserve a rich repository of the glacial and fluvial landforms, alluvial fans, and lacustrine deposits. Based on detailed field observations, geomorphic mapping and limited optical ages, we suggest four glaciations of decreasing magnitude in the SZR. The oldest Southern Zanskar Glaciation Stage (SZS-4) is inferred from glacially polished bedrock and tillite pinnacles. The SZS-4 is ascribed to the Marine Isotopic Stage (MIS)-4/3. The subsequent SZS-3 is represented by obliterated and dissected moraines, and is assigned to MIS-2/Last Glacial Maximum. The multiple recessional moraines of SZS-2 glaciation are assigned the early to mid Holocene age whereas, the youngest SZS-1 moraines were deposited during the Little Ice Age. We suggest that during the SZS-2 glaciation, the Drang-Drung glacier shifted its course from Suru Valley (west) to the Doda Valley (east). The study area has preserved three generations of outwash gravel terraces, which broadly correlate with the phases of deglaciation associated with SZS-3, 2, and 1. The alluvial fan aggradation, lacustrine sedimentation, and loess deposition occurred during the mid-to-lateHolocene. We suggest that glaciation was driven by a combination of the mid-latitude westerlies and the Indian Summer Monsoon during periods of cooler temperature, while phases of deglaciation occurred during enhanced temperature.

    • Correction to: Geomorphic investigation of the Late- Quaternary landforms in the southern Zanskar Valley, NW Himalaya

      Shubhra Sharma Aadil Hussain Amit K Mishra Aasif Lone Tarun Solanki Mohammad Khatib Khan

      More Details Abstract Fulltext PDF
  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.