• Shuang Jin

      Articles written in Journal of Earth System Science

    • Ice thickness, volume and subglacial topography of Urumqi Glacier No. 1, Tianshan mountains, central Asia, by ground penetrating radar survey

      Puyu Wang Zhongqin Li Shuang Jin Ping Zhou Hongbing Yao Wenbin Wang

      More Details Abstract Fulltext PDF

      The results of radar survey for three times are presented, aiming to determine ice thickness, volume and subglacial topography of Urumqi Glacier No. 1, Tianshan Mountains, central Asia. Results show that the distribution of ice is more in the center and lesser at both ends of the glacier. The bedrock is quite regular with altitudes decreasing towards the ice front, showing the U-shaped subglacial valley. By comparison, typical ice thinning along the centerline of the East Branch of the glacier was 10–18 m for the period 1981–2006, reaching a maximum of ∼30 m at the terminus. The corresponding ice volume was 10296.2 × 104 m3, 8797.9 × 104 m3 and 8115.0 × 104 m3 in 1981, 2001 and 2006, respectively. It has decreased by 21.2% during the past 25 years, which is the direct result of glacier thinning. In the same period, the ice thickness, area and terminus decreased by 12.2%, 10.3%, and 3.6%, respectively. These changes are responses to the regional climatic warming, which show a dramatic increase of 0.6°C (10 a)−1 during the period 1981–2006.

    • Recent geodetic mass balance and extent changes of very small glaciers in the Hulugou Basin, Central Qilian Mountains, China

      Chunhai Xu Zhongqin Li Feiteng Wang Lin Ha Yousif Elnour Yagoub Shuang Jin

      More Details Abstract Fulltext PDF

      Very small glaciers (< 0.5 km$^{2}$) account for more than 70% of the total number of glaciers in the Qilian Mountains. Despite their total area and volume being small, they are important water resources in the Hexi Corridor. While glacier monitoring mostly focuses on medium-sized and large valley glaciers (e.g., Qiyi Glacier and Laohugou Glacier No. 12) in the Qilian Mountains, little is known about very small glacier mass balance in this region. This study presents a geodetic mass balance of six very small glaciers in the Hulugou Basin by comparing Shuttle Radar Topography Mission (SRTM) C-band (2000) and airborne laser scanning (2012) digital elevation models (DEMs). The total glaciers’ area decreased by 23.6% at a rate of 0.024 km$^{2}$ a$^{-1}$ and the geodetic mass balance was $-$0.68 $\pm$ 0.11 m water equivalent (m w.e.) a$^{-1}$ from 2000 to 2012. Shiyi Glacier, as the monitored glacier in the Basin, had lost 10.9% of the surface area at a rate of 0.005 km$^{2}$ a$^{-1}$ and the geodetic mass balance was $-$0.53 $\pm$ 0.11 m w.e. a$^{-1}$ for the period. Climatic variations over the last decade showed a pronounced increase in summer temperatures. The warmer conditions probably explain the glaciers mass loss observed in the Hulugou Basin.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.