• Sandeep Gupta

      Articles written in Journal of Earth System Science

    • The South India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX)

      S S Rai Kajaljyoti Borah Ritima Das Sandeep Gupta Shalivahan Srivastava K S Prakasam K Sivaram Sudesh Kumar Rishikesh Meena

      More Details Abstract Fulltext PDF

      We present here the most comprehensive study of the thickness and composition ($Vp/Vs$ ratio) of the South India Precambrian crust and the nature of shallower mantle inferred from analysis of teleseismic receiver functions from 70 broad-band seismic stations operated as a part of the India Deep Earth Imaging Experiment (INDEX). South India could be broadly divided into regions with thin crust (32–38 km) and thick crust (38–54 km). Thin crust domains include the East Dharwar Craton (EDC), Cuddapah basin and Madurai/Kerala Khondalite Block. The thicker crust domain includes the Western Dharwar Craton (WDC) and northern part of Southern Granulite Terrain. The WDC shows progressive increase in thickness from 38 km in north to 46–54 km in south, compared to an almost flat Moho beneath the EDC. Compositionally, most of the crustal domains are felsic to intermediate ($Vp/Vs$ ∼ 1.69–1.75) except the mid Archean block in the southern WDC where it is mafic ($Vp/Vs$ < 1.81). Considering erosion depth in the WDC, we argue for Himalaya like ∼70 km thick crust beneath it during the Archean. Variation in crustal thickness does not have a first-order influence on regional topography in South India and suggests significant role for the crustal composition. We also present evidence of mid-lithospheric low velocity at ∼85–100 km beneath South India.

    • Anomalous transients in GPS measurements due to induced changes in local site conditions

      Sandeep Gupta Paresh Nath Singharoy Rajeev Kumar Yadav Joshi K Catherine Roland Burgmann Vineet K Gahalaut

      More Details Abstract Fulltext PDF

      Transients in GPS time series can occur due to post-seismic deformation, seasonal hydrological loads, sea-level changes, flood and drought conditions, excessive groundwater withdrawal and recharge, etc. We report two new cases where the application of external loading, namely, earthquake loading and surface loading due to impoundment of hydroelectric reservoir, probably altered the local hydrological conditions to cause anomalous transients in the surface displacement. In the first case, moderate shaking due to the 2015 Gorkha earthquake at Patna (Bihar, India) caused transients in ground deformation in the following 50–60 days of the earthquake which are recorded by a continuous GPS site at Patna. In the second case, impoundment of the Tehri reservoir and its seasonal variations in the Garhwal Himalaya probably altered the local hydrological conditions which is causing anomalous biannual cyclic deformation at a site KUNR, near the reservoir.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.