• SRIDHAR D IYER

      Articles written in Journal of Earth System Science

    • Extending the limit of widespread dispersed Toba volcanic glass shards and identification of new in-situ volcanic events in the Central Indian Ocean Basin

      ANKEETA AMONKAR SRIDHAR D IYER BABU E V S S K MANJU S

      More Details Abstract Fulltext PDF

      We report the widespread extent of Toba volcanic glass shards in the Central Indian Ocean Basin. Investigation of four sediment cores (7$^{\circ}$–17$^{\circ}$S) revealed several shard-rich horizons (SRH) that provide the first detailed tephrochronology for volcanic glass shards in the CIOB. A comparative study of surface sediments floored with Youngest Toba Tuff (YTT), indicate that irrespective of the rate of sedimentation, YTT in the basin is restricted to a depth of <35 cm-bsf. We utilized microtektites (0.77 Ma), associated with the Oldest Toba Tuff (OTT) glass shards, as a proxy for age calculation of the SRH. The results are comparable with well-established ages derived from paleomagnetic and $\delta^{18}$O methods for the Leg 21 ODP Site 758. The other significant finding of this study includes the first report of Middle Toba Tuff (equivalent to Layer C) and Layer D that are present between YTT and OTT (Layer E) and also Layers G, H, h, I, J, K, L and M. All these layers correspond with those reported for ODP Site 758. Furthermore, two SRH between layers G and H show signatures of localized in-situ phreatomagmatic origin, suggesting that CIOB is apparently more active – tectonically and volcanically than it is presumed.

    • Geochemistry of aerodynamically distorted Australasian microtektites: Implications for ejecta on Mars and Venus

      RUDRASWAMI N G PRASAD M SHYAM SRIDHAR D IYER PANDEY M CHRISTOPH HELO DIPAK KUMAR PANDA

      More Details Abstract Fulltext PDF

      We report microtektites recovered from a large area of the deep seafloor (Central Indian Ocean) that appear to have undergone aerodynamic distortion during re-entry into the atmosphere. Considering the geographic locations, stratigraphic position and chemical compositions these glassy forms belong to the Australasian tektite strewn field. The microtektites are elongated to lengths of cms, sometimes flattened, bent, folded and fused at both ends suggesting that this side could have been the Earth-facing side during the re-entry. The presence of flow lines and distortional features are indicative of high atmospheric pressures experienced by the microtektites. The location where these microtektites were recovered constitute distal ejecta, and the shape distortion, that occurred during re-entry of the ejecta, seems to have affected only a few amongst the extensive collection of microtektites. Most of the specimens contain lechatelierite inclusions and higher volatile oxides, which are indicative of incomplete homogenization after melting and lower temperatures of formation vis-à-vis other specimens at the same location. The element distribution patterns in aerodynamically distorted microtektites suggest that ablation was similar to normal spherical tektites in which volatile elements are preserved. In contrast, aerodynamically ablated forms of Australasian ejecta show skin melting where thin layers of the anterior portions of samples flow back giving rise to the familiar button shapes. Our observation of delicate, elongated, flattened, and viscously deformed specimens is perhaps the first to imply that at the distal end of ejecta, each spot in the specimens has undergone different levels of trajectories, heating and ablation. These investigations could have implications to understand ejecta emplacement characteristics on planetary surfaces that contain appreciable atmospheres such as Mars and Venus.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.