SHILPA PATIL PILLAI
Articles written in Journal of Earth System Science
Volume 127 Issue 3 April 2018 Article ID 0032
Shilpa Patil Pillai Kanchan Pande Vivek S Kale
The Kaladgi Basin on the northern edge of the Dharwar craton has characters diverse from the other epicratonic Purana basins of Peninsular India. Sedimentological studies in the basin have established the presence of three cycles of flooding separated by an event of intra-basinal deformation accompaniedby low grade incipient metamorphism. The overall structural configuration of the basin indicates its development by supracrustal extension accompanied by shearing in a trans-tensional regime during the Mesoproterozoic. This was followed by sagging that yielded Neoproterozoic sedimentation in a successornested basin. ⁴⁰Ar / ³⁸Ar dating
of an intrusive mafic dyke along the axial plane of a fold has yielded a plateau age of 1154±4Ma. This helps constraint the age of the various events during the evolution of this basin.
Volume 131 All articles Published: 14 May 2022 Article ID 0121 Research article
SHILPA PATIL PILLAI KONDEPUDI PATTABHIRAM GAURI DOLE PRIYANKA SHANDILYA DEVDUTT UPASANI KANCHAN PANDE VIVEK S KALE
The Bhetkheda–Mohana Lineament is traced as a continuous lineament across nearly 100 km in the central Narmada valley across the Deccan Trap basalts and their basement of Proterozoic sediments. While a major length of this lineament is occupied by a basaltic dyke, there are segments where the dyke is completely absent, and the lineament is represented by a regional fracture/shear/fault zone. At its eastern extremity, this dyke is exposed intruding along the axis of a synclinorium of the Vindhyan Supergroup sediments, as a 4-km long string of hillocks of picturesque columnar jointed basalt. It has the presence of ignimbrites and a thin basaltic flow (resting on the sediments) surrounding it, suggesting the presence of an eruptive vent. This dyke intrudes the Mandleshwar Formation lava flows dated at 67–66 Ma and is associated with the Narmada dyke swarm. It has given $^{40}$Ar/$^{39}$Ar age of 66.6±0.5 Ma. Its chemical characters conform to those of the basaltic flows of the Malwa Traps, indicating a common source and emplacement history. This is a unique example of a dyke that was emplaced along a preexisting fracture zone cutting through the Proterozoic basement as well as the Deccan Trap lavas, with a distinct petrological identity with the host lava flows, indicating its feeder relation. It endorses the comparison of the Icelandic mode of fissure-fed flood basalts with the eruptive history of the Deccan Volcanic Province.
Volume 132, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.