SEETHALA CHELLAPPAN
Articles written in Journal of Earth System Science
Volume 129 All articles Published: 10 January 2020 Article ID 0043 Research Article
PRAMIT KUMAR DEB BURMAN NARASINHA J SHURPALI SUBHARTHI CHOWDHURI ANANDAKUMAR KARIPOT SUPRIYO CHAKRABORTY SAARA E LIND PERTTI J MARTIKAINEN SEETHALA CHELLAPPAN ANTTI AROLA YOGESH K TIWARI P MURUGAVEL DINESH GURNULE KIRAN TODEKAR THARA V PRABHA
Climate impacts agriculture in various complex ways at different levels and scales depending on the local natural crop growth limitations. Our objective in this study, therefore, is to understand how different is the atmosphere–biosphere exchange of $\rm{CO_{2}}$ under contrasting subtropical and boreal agricultural (an oilseed crop and a bioenergy crop, respectively) climates. The oilseed crop in subtropical climate continued to uptake $\rm{CO_{2}}$ from the atmosphere throughout the year, with maximum uptake occurring in the monsoon season, and drastically reduced uptake during drought. The boreal ecosystem, on the other hand, was a sustained, small source of $\rm{CO_{2}}$ to the atmosphere during the snow-covered winter season. Higher rates of $\rm{CO_{2}}$ uptake were observed owing to greater day-length in the growing season in the boreal ecosystem.The optimal temperature for photosynthesis by the subtropical ecosystem was close to the regional normal mean temperature. An enhanced photosynthetic response to the incident radiation was found for the boreal ecosystem implying the bioenergy crop to be more efficient than the oilseed crop in utilizing the available light. This comparison of the $\rm{CO_{2}}$ exchange patterns will help strategising the carbon management under different climatic conditions.
Volume 129, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.