Articles written in Journal of Earth System Science

    • Microbial mat-induced sedimentary structures in siliciclastic sediments: Examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, M.P., India

      Subir Sarkar Santanu Banerjee Pradip Samanta Silambuchelvan Jeevankumar

      More Details Abstract Fulltext PDF

      This paper addresses macroscopic signatures of microbial mat-related structures within the 1.6Ga-old Chorhat Sandstone of the Semri Group — the basal stratigraphic unit of the Vindhyan succession in Son valley. The Chorhat Sandstone broadly represents a prograding succession of three depositional facies ranging from shallow shelf to coastal margin with aeolian sandsheet. The mat-mediated structures were generated because of plastic or brittle deformation of sand, turned cohesive and even thixotropic because of microbial mat growth. Mat growth also favoured abundant preservation of structures that usually have low preservation potential. Prolific growth of microbial mat in the subtidal to intertidal zone of the Chorhat sea was facilitated due to lack of grazing and burrowing activities of organisms in the Precambrian. It further indicates low rate of sedimentation between the storms, as also attested by frequent superposition of storm-beds, even near the storm wave base. It also reduces erosion and that, in turn, would imply low sediment concentration in flows leading to development of bedforms that are likely to be smaller in size and isolated from each other in a single train in contrast to those that form in mat-free sands.

    • Chuaria circularis from the early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: Insights from light and electron microscopy and pyrolysis-gas chromatography

      Suryendu Dutta Michael Steiner Santanu Banerjee Bernd-Dietrich Erdtmann Silambuchelvan Jeevankumar Ulrich Mann

      More Details Abstract Fulltext PDF

      Chuaria circularis (Walcott 1899) from the Suket Shale of the Vindhyan Supergroup (central India) has been reinvestigated for its morphology and chemical composition using biostatistics, electron microscopy and pyrolysis-gas chromatography. Morphology and microscopic investigations provide little clues on the specific biological affinity ofChuaria as numerous preservational artifacts seem to be incorporated. On the contrary, the predominance of η aliphatic pyrolysates of presently studiedChuaria from India rather supports an algal affinity. Moreover, the reflectance ofC circularis can be used to obtain a comparative maturity parameter of the Precambrian sediments. The review of the age and geographical distribution ofC circularis constrains that this species cannot be considered as an index fossil for the Proterozoic time.

    • Revisiting the boundary between the Lower and Upper Vindhyan, Son valley, India


      More Details Abstract Fulltext PDF

      The placement of the boundary between the Lower and the Upper Vindhyan in the Son valley, an unconformity, has long been at the centre of a raging debate. At the Bundelkhand sector, it is placedbetween the Rohtas Limestone and the Sasaram Sandstone (Lower Quartzite). On the other hand, in the Son valley sector, it is placed between the Bhagwar Shale and the Kaimur Formation. The recent study reveals the existence of ca. 12 m thick sandstone between the Bhagwar Shale and Rohtas Limestone, traced over 150 km in the Son valley sector. Based on in-depth facies constituents and facies tracts, this sandstone is an exact equivalent of the Sasaram Sandstone in the Bundelkhand sector. Its base is strongly erosional and limestone and chert clasts derived from the underlying Rohtas Limestone are abundantly present at the basal part of the sandstone and the unconformity between the Upper and Lower Vindhyan are likely to be present in between.

    • Geochemistry of the Heavy Mineral Sands from the Garampeta to the Markandi beach, southern coast of Odisha, India: Implications of high contents of REE and Radioelements attributed to Placer Monazite


      More Details Abstract Fulltext PDF

      This study presents major element, radioactive element and rare earth element (REE) concentrations of the Garampeta to Markandi beach along the southern coast of Odisha, India to delineate the source signature and resource potential of the beach placer deposits. Average $\sum$REE concentration of the beach sand samples is about four times higher than the average crustal concentration. The LREE concentration is higher than HREE, with a pronounced negative europium anomaly. The study also discusses about the radioelement $^{238}$U, $^{232}$Th and $^{40}$K concentrations in the study area, and their relationship with REE. Weathering condition of the source rock, based on the major elements and Th$/$U ratio indicated a reasonably high degree of weathering. Major element and the REE composition along with the europium anomaly, relate the beach placers to mainly charnockite and khondalite source. An elevated level of thorium (>60 times than the average UCC values) as exhibited by the samples could be attributed due to the presence of monazites. The high concentration of REEs like Nd and Dy along with La and Ce indicates significant REE resource potential in the beach placers which is important for the resource potential in terms of the strategic mineral reserves of the country.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.